• Nu S-Au Găsit Rezultate

View of On some properties of \(K\)-monotone operators

N/A
N/A
Protected

Academic year: 2022

Share "View of On some properties of \(K\)-monotone operators"

Copied!
5
0
0

Text complet

(1)

IIA'1'I IL lL\1'I(1,\

-

IìltY LtIj D',\NÄL y SD À-t_'.\tÉÌì I e L U

E'T DD TIIÉOIìIÍ' IJE I-';\PPROXINIATION

L',ANALYSE NIIÌ|IflIìIQUE ET L,\ THÉOÌìIB

DE

L'r\pIltìOXIilLITION- Tomo

16, No

J,

1987,

pp. 69-76

Ol{ SOiVIll PROPDIìifItrlS,OF 1I-MONOTONII OIìER,\TO

RS

IìAJ)U I)IìIiCUI)

(Clu j-Napoca)

1. Introduetiou. In an

ear'lier píìper,

f14], u'e'have

inllocluced ilre class

oI

If-molrotoIte opolatols, u'hicìr is u'icleil

than

the class of monotone

(in the

,sonse

ol

r\rintr'-rh'owcler')

operatols. since this

class

of

oper.atofs also iltolucles

a sufficicntl¡' lillge set of

(o)-monotone (rnonotone

in

tho scnse

of

olcler') opclatols,

il,

follon's lJrat

the

invcstigation

of

/f-monotono opelatols

is of

int,elest ab

lcast fot a

unita,r.\¡ ¿tpptoach

to the

theolies of rnouotone ancl (o)-rnolotone operrltols. illhe

fact

hhat this unitar.¡, zr,ppr,oach

is a

natural

one,

follorvs flom lefs.

1151, |-16.],

l'helc

the bcsl,-appiõxima-

tion operatol of the elerncnts of a

Tililber.t

spàce X, bli

elernents

of

a nont'oid closcil convex subsel, O aucl n,i1,h r:espgct

to a celtain

nolrn

orr ,Y, is iuvestigatecl,

In

some conrlitions imposed

to

the

nonn

ancl

to

tìre subset, C, the best-apploxirnation operatol can bc monotone, or' (o)-nono-

tone,

or' (essentially)

onlr.

1{-tnonotone.

ln this papcr', s'c sìrall

extencl some 'n'ell-knorvn l¡asic

results in

monotone operlatoLs

to the

cla,ss of Jf-rnonotone

opelatols.

Pi¡r't,

of thcse

cxl,ensions

rvoto

ah.eacl¡. ,1uon to

t141.

û.

1f-tr{onotone oper.atols"

Let ,{

ancl

Y

l¡e

trvo real linear

spaccs.

By (.,.) *e

clcnote

a bilincar. functional on .X X y. If I{

c.

X is

a

cotn)e;Ð cou,o

-(i.e. I{

1-

I{ c Il ancl aK < If ior, ary ø ) 0), then

l,he

ltolg,r_cone_I{*

of -Il with

respect,

to the bilinoar

function¿r,l

(.;.) is

defi:.

neil by I{'t:{y.Y; (r,tJ) ) 0 for.all øe,Ií}.

I_.iet

A:X -+2v ba

a rrrultir.aluecl

operatol ancl cleuotc ))/ ll(d) the

sei; {ø

e,-l ; Än t A\.

Tlro operator'

á is

callecl nt'onotone (rvit,h respect

to the bi-liletl

functió-

lal-(.:.))-it fol an¡' n, n'eD(A), tire

iuequatif,y

(r - ù', !/ - y') >

o

Irolds

fol all y

e

An and,y'eAn'.

The opelator

á is

said.

to

l-te(o)-mono- tona (rnototonc

in

tho sense

of

older') ploviclecl

that

nìrenevet:

n,

a' e D(A) ancl

n - c'

e 11,

then

lJ

-* !l'e 1l* for all

y e

An

and.

q'

e

Án'. fn lef.

f.14.], 1ìrc operatol

l. l'as

callccl l{-ntou,ototta proviclecl

that

for. àtty

u, n'e çDAÐ

such thal,

!! -.rr;'

e 11,

thc

inerlualil,¡'

(r - n',

tJ

- y'> ) 0

holds

for all

y e

tLr

ancl

y'

e

An'. Arnonotone

((o)-rnonotonô ot'-,Ií-rnonotonc)

opelator -4 is said to be

ntamintal ntonolona

(ntanintal,

(o)-ntonotone or.

m'animul .kntonotot¿a)

iÎ, l'hencvcr

-B

is

an

opelator'having the

same pr.o-

pelty

as

zl

anrl

An c Bn lot all r

e

X, then A : ll.

68 J. E. PEÖARIÓ

REFEIìENCES

I1j' T. Popoviciu' Sur quelques inégalités entre les fortctionsconueres(prernièrcnote) C. Iì.

Inst. Sc. De Roumauie, 2 (1938), 44î1.--454.

[2] - , Sur quelqttes inégatitës enlre les fottclions cottuexes ( deuxièutc ttole ), Ibid. S ( 1gJ8), ,lir 4 - 45g.

[3 ] r

' Sur quelEluee inégalilés enlie I es fotrclions conuettcs ( lroísicnte nole ) , tbid . 3 (1g 99), 196 -. 402.

[1]-, Les foncliottl conl¿.1]cs, Paris, '1g45.

Recaived 10. XIL 1985

Fctcttly of C tuil E n¡Jirtccring IJuleuar lleuo[trcíje'lJ

1 1 000 Ilcogrctd, Y u"goslauia

ri _,

(2)

70 lì. PlìDCUP

It is

clear

thal,

an opcrator

is

1f-rnonoi,onc

if

ancl onl.v

if it

is

(- Iq-

Dlonotone. AIso, cach ntonobono

opelatol is

lGnrclnotorie fór. aÌr.y coÌl\rc.\

conc

/f andiI I(

U

(-I{) : )l,

l,'[rcrl

the

1f-¡ronotonicii,r- r.ec]¡ccs

to t¡ono-

tonicit¡..

Tt is

also tx,idgnt tha,t c¿tch (o)-nronotone opelzr,t,ol

is

-Ií-lnonot,ouc, l\loleovcr',

iÎ Cc }l is

¿r, colr¡ex cone

anrl 'f': Y

-+

Y is

a litrear,olte- I'al,ol n'ltich tnaps C

into

1l'l',

i,c.

?'(

())r,

lç't', thcu each opcr.a,tol

A: X-r2r' rvlrich js

(11, C)-rnonototri¡,

in the

,sctirjc

thai, l-hcner-cl lor,

:t:,

:r'e eD(A)

one has ))

- ü'e

/1,

then y - .!l'e

C for.

a\l

y e:1,¿ ancl ..r¡' e A.7t',

is

/f-rnonol,one

n'ith

t'csptc1,

to the bilincal

f

unctiorral

( . ,7'(.

)), i.e.

1he

ineclnaliti' (r - r', 'l'(y !l')> > 0

holcts

for

cr.et'\. iü, ))' e

Ð(,{)

sntis-

fying

ø

- fi'

e

If

and

l'ol all

u

e iin

anrl ry' e

Aa'.

Also,

if I'

t .Y

-,,Y is a

linea,r, opclzl1,or.

I'hich

nra,ps ^11 inbo O'i,, i,c.

L(Ii)

<-

C*,

rvhcrrc __U*

- [r

e

-{; (,r, l) > 0 for nll

i7 e

C}, thcn

ea,ch

opclat,oÌ

A

:

X + 2y

tt-lticlt

is

(11, O)-rnctnotouo,

is

-11-rnoilo[,onc ritii,]r rcs-

pect, to

1,ltr¡ bi-lino¿lr" TLrncl,iolral

( l,(.), .), i.c. thc

inoc¡rLzr,1it,,1' J,(c:

-- -fr'), y- ll'> )0

lrclltìs

for

cvt¡r,)'

l:, il'e 1)(;t) satisfying ø- a'e](

ancl

fol all

y e

;lr

ancl q' e .,Lt'.

11,

in

ncìclitiotr, ,lJ ancl

Y

Íìr'r. sop¿ìir'¿ìtcr1 iocall¡' conve-\ sll¿ùce¡i,

I{ + L

ancl

d ¡

Y, then

tltclo

cxisb l:1:3)2,

i.121tn,o non-trivial

continuous linca,r' funol,ionals

/: -l

--+

[p arttl r/:

-l-

-' [fi such tìrnt

,/'(1()

c f0, f oo I

ancl

g(0) c [0, ]-cof.

\Àre c¿rn irnmecliat,el¡' sce i,Lra1, e.zìch

(lfr

O)-nronotoner

opclatoÌ A

:

'Y

-+

2r' js

-1(-tnonotolrc.

rvith

rc'sltcct

to tire ltilineal

functio-

nal

clefinecl

b¡' (ø,

,y)

- lQ) gQ) fot

r)

e

.Y ¿rnri u e

]i.

3" À

nraxirlrnlitS, I'r,$ull,

olì Jl-rnouot,ole opera[ors.

,Jìhr:ou¡¡hout

this

paper', ,lJ

rvill

be ¿ rca,I

lincal

normecl str

Ìce, Ii its

ch¡al -f

*

a,rril i,ho

l¡i-linear functional on ,T X ,L't u'ill bo the ltetl'een

,Y

ancl

.Ï*, that is (et,

r'F)

- a';(t,)

I'or,

r

e

-\

We

sh¿r,ll sa,¡r

¡1tr¡ tlie

oprrlator'

á

:

lf D(tl) ,- ,\, is

lGltent'ícuxtinx(,ous crt n e D(,4)

if lirn zl(,1 r

lespecl, 1,o

tlre

n'ca,h'i' topolog¡- o[ -lJ'r'r tur, ,uuy.f Ë.¿f

, (-K)

such 1, ra,t

r

-l-

tll

e Il'(,1)

for. 0 (

ú

( t. / is iirìid 1,o

Ltt' K-l¿enticonl,inttotts

iT it, is ?-heini-

oolrtiuuous ¿lt ca,ch u e

I)(-4), In

1.hc 1ttr,r.ticn1:lt czi,pc

n.lrcn /( := ,\,

l),'e

shä,ll etlrploJ, l,he uStt¿tl

r(hclìlicolLi¡¡ili-" tet'llr

i's¡ear1

of '¡I-heu'ico't,i-

nttit¡,t'.

LulrlrÄ 3.L Lat I(

<-

X

be ct cott,^e:t) colle

milh,

u,on-enr,pty it¿terior cnud

let A:

D(J,)

+,{* ltc

rt, I{.-h,en¿iconti,u,tr,otts ctpercr,tdy, uhet,à tl1.+¡

ts

u den,se conuer s1[l)sct

of

-Y. IJt a:ne

D(tL),

r:io e

Ili.

rt,nd [h:,c ,inequ,alítr¡

(3.1) (n -.

no, ,,1:a

- r{) >

t)

Itoltls J'or cDery

0reD(A)

su,ch, lltu,t

r - froe1l

U

(--I{),

llten,

a;ff:,1.ru.

_. J?ro-oJ.

Iìilsl,,

n'e me.nt,ion th¿ll,

ittt¡

l( *

Ø, the,u

ill,

,1(

-f (-inl,

I()

:

-Y ancl

int 1f u {0} is

iìr con\ro,\ cone.

Supposc t_!al,

qf I tltru.

'J'hcn, sinco

ir{, li

-l- (

-int, /f) : .l,

ri'c

irray fincl

n

in X

such iJr¿-¡t

(3.2) t -noeilLt,lf U(-int If)

:

oN sol\4tt PtìoIrutl-t'l'1ES oll i<-J\4()No'r oNll oI,lJÌlA'I'olìs ì1

ancl

(3.3)

(,r, '--

llo,

:l;ìro -'- ero*)

<

0.

Sirrcc D(.,1) ìs a rlcnsc subsoi,

of ,\l

and rerla,tions (3.2) and (3.3)

ale

satis-

jliccl

in

¿r,

l'hole

ncic'hbour'hood o1i

i/,

f\ro rna,y assurlre

tbat in

relations (3.2) a,rrd (3.11) ,L'e

D(.{).

Nex1,,

thc colrvc-rity ot D(A) implies

thal, r¿

:J.,0

F f(,r; -_- ,1:n) e D(-,1

)

f

rrr'

0

<¿ < 1. ,,\lso, ll1' (3.2) \\'e

have i.ì'¿-,?,0==,

l(,r'-,ro)

e ir-Lt1i

u (-inl, Il) c 1f u (--K) for'0{ú(l'

Con-

sirrg 1.o Lintit ¿r,s / J 0 arrrl t:-r,kin¡l'itt1o ¿tccotLltt, t,he /f-hcmiool'r.1,inlriby

olì

;1,

n'e obtaiu (r

--

r,,,

;l;ì'0

- l'ot) > 0, tt'hich contlaclicts lclation

(3.3).

Ilcncc,

;tff

--,{¡ro.

'-llrmonr*r

3.1.

¿/ thr: co¡tue"t: oo¡to

Ii

<- ,Y

hns

u,r,tu,-ent,1tt,.ry ínlcrí,or, I'lten etrclt Ii-ltctnicon!'it¡ttt¡¿ts I{-non,oton,e operat,or

J

: -,ll

-, .Yf is

nt,ct"oi,nt,ctl

I(- Ln ,t n ul,tt n r'.

I,'t'or-,.f . [*:t, IJ'.

,f.-

2 \* be ¿ì 1L-ltrclnotonc

operalol

such

l,ltat At

e ]3,r

tol all r

e

-\'.

Ciotr;,lic1cr' (r'"r:bit,r'alilr') íirr)

e

,\:

.- D(A) autl

;r¿T e 1lro.

.,\sBis

/l-tnonototrc,r'oltzr,t-e

(:i;-rnr,,l,l- e;f) ) 0lclr ailre -I

sr-rch

tJrat

,r-r-Jo e 1( u

(-ll).

Flcnce, l)\'Lelrrln¿ì

3.I, rff.=,Aro.'l'husr ;lro -I]no

fol

evcrt',r' L'o e

li,

ri-hich ptovos t,he rnaximalit¡r ¡¡1

4.

fjonoll.ur,rr 3.7.

Lat,l: ,I

--,

.ti'ú¿

u cr,¡ntitntolt,s

litt,etr

operu'tor sutis- Jluing the i,n,equu,tity

(n',

J,r.r)

':-0 .for

ct.t 'l,aast on'a n e

X.

T'h,an' tlt'ere euists

c(, col¡L:efi con,c

K --

-Y

tuítlt'

tton-entp.hl

interior,

sttclt' th'ut

A

be nt'a,ni¡ttr.t'1, I{-nt,ott,oton,e.

Proo,f.

If fol

n',, e

X tire

ineclualit,y

(ro,

;1rr,,)

) 0

holtls,

then

as ,{

is

oonl,inuòus,

thero

exists ¿ì oonvex neighboulhoocl

I/ of ro such that (t:,

An)

>0 tol

cvcl'y Ír e 1r.

Nol',

ii, is cleal

tltat,4 is

/f-monol,onr:

u'itlt

rrspeci;

to the

coìr\¡e\ r',ont

s'ith

uon-r:inpt¡'

jntciriol: Ii: {In;

n

e l''

and

t

>-

}ti

ancl rve rn:l-v zr,p¡lly

'f'hcoletn 3.].

Il.cnt,urli,:1.1.

It'

1hc ooltvc'x oono

Jf

s¿r,f.isfies K.u

(--'K) :

,f

,

thelr

ihe /l-tnoncltorliciLy a,ntl t,he -I(-hcnrico¡rtinrLit,¡' rllc lospectir-cl¡- eqr.rir.alerlt 1o

lhe

urolotrrnicritl- ¿¡ricl

the

ìicLniconbintr-itr'àncl so, a,

l'ell-knol'n

I'csult'

l-[,

Ircmtìllì

2l

nlrout

the milxiiìirl

r-ncnol,onicii,t' of irelnicoutinuotls ]lLolÌo-

torrc

ol.lci'atclls

is tlclivetl fi'om

,l.lteot'em 3.1.

4.

troc¿rl h¡nr¡tded¡ltx¡s iulEl

eolltiuuilr-

lrf 1f-ltouof one optla(ot's. Àt-L o¡rèr'ator'

Á

:

X -,

2x*

is

s¿i,jt1

to be \ocatly

bt¡u'txled c¿t n e .X.

it

1,hel'c

r,iists a, neighìroullioocl lr of 'ü such tÌrat thc set Açlr¡ :

u

{Ay

;

'y e

D(A)

n ¡21

is

bolLndetl

in

-l'!'.

illtrucllto¡u

4.1.

I'et 'Y be

tt, t'ectl l',u,n,ttclt, sprtce ut¿d'

let I(

c- ,Y be ru coit,ì)c,t) t:on,e u'ítlt, nott-em,pl,y í n'terior. Tlt,e

n'

cr'tr,¡1 l{.-ttt,ott otr¡tte operat,or

tI

:

,\.

--+2x*'is Locr.tll,tl Ltcttutcletl

ut tlte

in'tet'ir,¡r po'i,nts

of

D(A).

['rooj.

AssuLnc

tho

oxisteLLcc

of a ltoint

øo e

itrt D(A) itt

rvhich

;l

is

not

locall.y l¡ounclcd.

\\¡c

rnav suilpoije tl,:,t'

no:

0 bccause the

/l-mono-

lorricit,¡' is

jnr¡ar:i¿r,nt rrucl.cl tr'¿lnslations.

lhcn thcre

cxist, ¿ì sctltlence

(3)

72 II. T'EECUP 4 l-t ON SOMN Ì)IìOPBß'I'IìCS OI¡ K-MONOI'ONIi] OPFJIìATORS

(¡,) -

1)(,,1) arrcl ¿ù sequcncc (.u,f),

r

--+ co &s ,t'L -->

æ.

Sincc

1{ is a

con

can fincl a,

clos i

c int If u {0}.

:

B(0

;2 ?)

î,

(4,.1) (n¡ - z, nf) -) -

oo

as./ +

co,

for

a certain subsecluence-

(ri)

ol1n,,¡ (rvrrer,c b.y -B(0; p) rve

have

clcnotecl

the.set {ae

,Y;_l[,ru]l

< g]).

Assuming

that this js.-t'ttr"

case, u,e shall

tlcrive a

coutracliction._I.¡-c1;

p)0

srich

that for cacr øe

rìIo ilicr.c c*i,st.s

a

constant

c" fot

rdrich the

inequalit¡' (r,, -

z,

n,f) >

c, hoids

for all

r¿.

Fol

a,r¡.

rratural nutlbel I;, tho sct 14ri lre l[r1 (r,,-_ ü, nl) ) _h

for

a1l rr) is olosccl a,uc[ Jlo

:

Û.,r,,.. sirroc

-y

is cornpletc ir,nd ^ìfois closecl,

h is

¿r contl¿r,rÌic,tion. llìhus,

\,c

h¿ì\-e

a z

e

)[o

such that, r.elatiotr (4,[) (ø¡)

of (r,,). Noni

sincc

a,o:.0

p_

ì

0,

snch

i,hat B(0

;

2 p)

c

D(A)

1o belongs

to D(,1). On ilrc oilrcr

füom belorv,

\'e

h.ave arrivecl

to a

c

the local ì:ouncledncss of

:l at ro

as

conor,r,.tnv r..1(,Itil).

ry -r is *

reur Lletnuch, s,pu,c(3, trrcn a,*y t,,o,,otQtrc opertttor

A : x

--+

2x^ is

locally l¡otuttl,ecl

ut

th,e

.interior

poiruts

"l D(.{).

ProoJ. Theolenr 4.1 ca.,n

bc

appliect, n'her.c

Ii :

.y,

Cor¡or,r,¡¡r,y

4.2.

f,et,Y,be nractl lSanuclt, spu"ae ctntllet

Itc_ X

boa cot,t_

1)ù) cone witla non-atnpty inteúor. 'I'lretr,, any (o)1 tnonotctne operutor

A:

-y _,

-* 2x* is

tocaUy l¡o¿ntclecl at, tlrc

ittterior

,poituts

of

D(Ä).

. Pl:gul

Recall 1,hat eaoh (o)-rnorrotone opclator,

is -Il-norrotone

aucl

altPl¡, ifheorem

4.1.

g e A(no

l-

¡-r.r.r.).

lllhe

opcral.or'

/ beirìg

(o)-monotone, \ve

have (y, /) ( ( (3/, ø*) < Ql,

g>

for ever¡'

u e .R(no) g1'), uÅ'e

-'ln ald

y e

1(.

r\orv, let z bc atry element, ol ,Y. Since ø can be

xritl,en

iì,s !/1

- y,

'lvi1,h

yr,

1y, e

I(,

n'e get (yr, ,f) - (y* g) { Q, r',*) <

Qtt,

{t) - Qlr,.f) for all r

e B(æo;

¡rr') ancl n+ e

Aø. Using thc

rLniform bouncleclness theorern, t)re las1, ine- qurr,lil,ies

itnply that,4(B(øn;

pr)) is l¡ouncletl

itr.I*. llhns, l'e

have plor.ecl

the local

l¡ouncledness

of :l

a,t

ro

as clairnecl.

An

operator -l1 :

D(A) -, X*, D(tI) < I, is

saicl

to 1:a

detr¿iconti- lln;o"tts

nt

no

if

A!f,,,

-t:løn

(as

n - Ø)

weahl¡.

in ,I*, for

a,rry seqtrence

(n,) -

D(,,1)

strongly

convergent

to

no

in ,{.

în¡onnu 4.2.

f'et,

X

be u, reJl.enit:e Bu,ttuah space an'd,

let I(

c:

X

be

a

contten cone tuitl¡ non-entpt'¡1

interior. Let A:D(A) -

X.'F,

D(A) c X,

be u, IGntonotone r,tpercttor a,nd,'[et no e

int D(A). IJ

the olterntor tL

is

l{-hemi-

continntou,s at no, th,eu,

it is

euen' denticou,tinttotts at no.

Proof

.

Let

(r,,)

c- inL

D(A)

be such that'

r,,

-+ ,f0 ¿ì,s 't1, --+

æ.

Accor-

tling to

Thcore,m

4.1, the

seqrelìce (;lø,,)

is

bounclctl

in X*

ancl,

liy

the

reflerivit¡' of ,I,

passing

it

necessary

to a

subsequencer \\'e m¿ùy assume lTtaL

Aa,,

-+ æiÈ n'eakly

in ,Y* lor

tt, --+ oo.

f,et

,r

be any

elemenl,

of Il(A)

for rvhich

fr

-

fio e

int Il

U

(-int/l). Then for ø la gc

enough, ø

- - fr,,eIf

U

(-Il)

arrcl

by the /(-monotonicity of /, we |ta\e (r -

r,,,

An - An,,)

>-

0.

Passing 1,o

the limit, u'e

obtain

(4.2) (n -

no, tLm

- "ff) >

0

for

cl¡cr'-v

n

e

D(A) sal,isfying n -

fro e

int/f u (-iut Il). Sincc *,0.

e

intD(:l), to any

?¿e

intll u (-intIl)

there correspontls

ù tu) 0

sLrch

tlrat

øo

]_'ln,einf D(A) for all

ú

lvith 0<¿ (t,,. lahing r: nol^ttt in by for

(4.2),

tlre every øe ,Il-hemicontinuity r'e obtain jnt/f

tlnaL U

(- (u, of inLI().

A(no

A

aT

I Ilut r0,

tu) \\'e har.c

- rf) since inl,If > that 0 for * (-int I(): a,

(tr',

0 <

A

n,

¿

< - f,. nf)

l)hen,

> it

O

follos.s that this inequalit¡'

holcls

for all

u,e,T.

Thclcfore, Aro-- nf¡

l,lrat is :l is

clerniconl,inuous nL no.

Conor,r,¿nv

4.3 (tgl). f'et X

be

a

reJlenit¡e l)un,ttclt spüce. Th,en, any tttott,etone henticontittttiu,i oltercttor

A: I)(A)

-->

X'r, D(A)

c-.

X, is

ilerai,' aln,ti'ìtttous ou, iu,t D(A).

Proof. AppI¡'

'Iheort¿rn

4'2, tl'hcrc I( : X.

Conor,r,lnv 4.4.

Let X

bea raJleuiae lìcm,q'clt, sltn,ce rmil let

I(

c- Xbe

ft

co,¡tÃeli aone

roitl¡

tton-etnpt'y i,n'te,ri'or' ll'hett,,

rnty

(o)-mon,oto'tte ltem,icon,-

linuuts

oper&tol'

A

t

D(tl) *-,Y1, D(A)

c-

X, is

ilenticottti+¿tt'otts on,

ittt

D(A),

5.

Surjeetivit¡z

6f /f'monolone

opel'ttors.

Let -T l¡e a leal

lincar

nor.mcd Spzì,ce. -.\n operator

A: X

--+

X* is

saicl Lo be coerciae

uitlt'

respcct to lhe elentent

lt,eX* if

the,re exists a nurnl¡cr

r>0

such

that llrlf 2rim-

plies that,

(u,

Am

-

/,,)

> 0. 'Ihe operator

-4

is callecl

coet'cí,oe

it (n,

An)lllrll.-+

oc ars

llrll +

oo.

We shall usc l,he follorving

lxoposition

(sec [12, 3.2.8]).

(4)

74 R. I'RIICUIJ

IrrJr\Jtf 5.7. Let

X

be u,finitc-tlimens,ir¡tt,nl Ila,naah, s,pa,ce.

I.f A : X -, -' X* is

ct cclt,linttotts oyteralor ruhiah

is

coet'r'ire u'íIlt, respeet tr¡ tlte c\entent h, e X*", tlt,en, Iltere enists u,t least ottc elentent n: e ,Y suclt, t,ltctt

lt : Ar.

îrlnonnrtr

5.7. f,d X

be

u

re,flea,ir:e Butt,aclt, s1:tctce cr,t,r,d

let I(

c:

X

be q, con'uen cone h,o,l)inq non,-ent,1ttt1 in,ierior ui,t,h raspect to tlte uenl; toptology

on,

X. IJ A

:

X -,

Xoo

is

ct, .[(-lten¿'icon,tin,ttct.ts .T{-tnr¡n,olone operu,tor uh,iclt, is coerciae

uitlt,

reslteot I,o h e

X*,

theu, llt,erc eaisl,s

at

least

lne

element n e X.

such

tltut

lt,

: At'.

?roof

.

Derrole

by

int,

1l

ancl ru-ittt

I{,

f.hcr

jnteriols of ./f with

res- pect

to thc

strong; topology ancl

to the

rvealc topolog;v or-L

,Y,

rcspcctivcly.

Obvionsly, tu-inb

J( c int K antl

since

u int l( 7 Ø,

ri'o Jiavc r,o-int,

/l

-{-

--l-

(-zu-int I{) :

;Y.

L:et,

A

l¡e coercii.e

rvith

respect,

to

h e

Xt'. Thcn thc

operato'-

ßn : :.Ln -

/¿

is

Jl-hernicontinuons, -Il-rnonotouc ancl cocrcive

l'ith

respccl,

to

0. Thus,

if

one considcrs

the opelatol R

in¡¡'¡carl

of

:1 1\¡c

mây

âssutne L}l'at lt,

: 0.

'Iherefole, sre have

to

llt'ove

that

l,Ìlcle cxìsts

ân

r,r0 e -lI such

ltlut' Aro :

g.

LeL

lf

be 1,[re

famil¡' of

¿-¡ll finite-tlirnensional linc¿u subripaces -I1 of

X for which

11

n int l{ + Ø,

orclerecl

ì:y

inclusion.

It is

obvious

that

i1ì

H

e

lf,, then the

convcx conc

1l n

1{ has non-crn1t1,r' irrtc'r'iol

in thc

topo-

logy

inclucccl

on

11.

Fol

each -17 e

//, lct J,,

)te 1,he

injection

rnap

of

-Il

into X

ancl

let

,/å l¡c 1,hc chLal projccl,ion

nap

(tìre surjection)

of X*

onto

I1+. We

set

zlro:,ffiAJr. îhe1,

tfue

opclatr.t' A,r:II

-> F1'F

is ]( n II-.

monotone ancl

1( n f/-herlicontinuous anrl, lt¡' llhcolern

,.L2,

iL is

con- tinuous. Also,

r{r, is

cocrcivc

n'ith

lespcct,

to

0. Accclcling to.Ltrtrma, 5.1,

tlrerc exists an

,ir1

e,I1

such l,ihat

tL,rrrr: 0.

C.lonseqLreutl¡. (uro,

An:r) : :

(frn¡

Arrfrr,):0.

Then

since;l is

cocrcivc

rvith

respect l,o

0, it

follorvs

l,hat therc exists rì

constrùnt

úl

inrlepcnrlenl,

of

11 such t'ha,1, llørrll

< t

for

every

II

e

/f.

_

Nou', Iol au¡, IIoe :/f

consiclel t,he

su'biiet lirn,: {rr,r; llo

c-

II}

of

.11(0

; C).

TlLt'rL

tlro

l':urrilr' { l'tt,,

: lIu

e

t(} har llrn

ljnile-jntclsccbiorr

property. Indcerl, it

,24,

Llre lf urtl

rye rlt:notc

by

J/o

: Éf,

U 11r, then

VHn

c [a, î, l'n". Sincc ,l is lei]cxivc, i,hc

bzrll 1]

(0; 0) is

rveahl¡' conlpact,

and

thus

therecxists an

elcnrenl, no e

,T ri'liich

lte,longs.lo thc weal< closuro

o[

cach scb l/¡70 svith .Tf

oe,/(.

lrct r bc an

¿l,tùitlrlly elernent

of

,T such t.ha1; ¿r

--

,?o Gru.ini,

I(

U

U

(--

ru

-inl, 1()

a,ncl

lct IIne //

bo such that, ø e /1n.

Flincc

øn bclongs

1,o the u'ea,li clostrre

of

l/¡¡o,,t,hele _e-rists ¿ù scquoncc (n,,)

- Jr,o such

tlial;

ü,,

+

o0 (1or

n --

co) s.oahlJ.

in ,Y. We

rna,¡' ¿ìsslltììe i;ha,t,

ø'--

n,,ey,u.ít-1L

K u

(*-to

-int 1l) c

-Ií

U (_-1l) for

a,11

z. flhen, by

t,he _Ii-

rronotonicity of .4, s'e have that

(5,1) (r -

nu,

A*) > (n

- - n,,, A,n,,)

llol all ø. On

i,hc

othel

hancl,

b¡' ,, e

[/¡70

ii; follols

f,hat,

thclc

c,rists arL

IL,,e'/f

stLclt

thal, IIo r, |Iu, il.t¿elI,ttttL A¡¡,,nù--=0.llì[cn, n--

t;,,eLIn âncl

x'e rnay

"write

that

--

iu,,, ,4,fr,,)

= (n -

3: ,,, tl¡1,, n;,,)

:0,

Tltus,

by

(5.1)

we finrl that (ø --

n,,,

,A,t) > 0 for all

n,. l?assing

to t]re limit

^s n-+

co,

lye obtain thal, (r -

no,

An) ) 0 Íor

c\¡ctJ'

neX

satisfying

ON SO1\4¡] PROPERI'IES OF K-I\ÍONO'IONE OPER.{TORS

ír'

-.

rrr,r e ¿u-int

ll

U

(

ro -inL

I{). Norv, obsell'tl

1,li¿t_.

,zl satisfies

all t,heasiurupl,iotrsof Lôlntna3.1,nhi'retllcictol"Lycxcotlt-

-/l':¿¿r-intIf

U_{0}

h:r,r'ing- rron-crnpty

stlong itrtclior', st:lnils

for' .1f.

Altplying

Trelnlrlâ 3.1¡

tye olttain Arn :0, l'llich

conplet'es

the

ploof.

I1

ryc

take /l - ll, tlierr

llhc()r'enì

5,1 itlltlics the follot'ing

x'ell-

lrnorrl

lesrtlt :

Conor,l¡nr¿

;j.1 ([2.], tl1.1).#

'Y is

u

re.fla:rire l)ct'pctclt s'pur:e anil,

A:

-1.

-* ,lt is

et, cocrci'L:e lteinicot¡titt'tt.i,tts m,ott,ot,ott,e operrttor, then, A.

is

su,rjec'

tiae.

It js

rLat¡r.:r,l

to

aslc

ilheor,cur

5.1 is altplicable to

(o)-monotonc 6¡te¡a1ols.

llic

arisri'et'

is

neg^nbivc

lor

infinitc-clilncllsiontùl Spa,ccs

,Y,

as

follort's florn:

Rentctrl¡

5.1. Let X bc an

infinite-climensional linear, normccl spa,ce

ancl 1e1,

I( c X

lto a colt¡¡ex colle

h ling

non-en'ipt¡'

interior rvith

respect

|o tlrc

rvealçtopology on

'Y.

IrcL h, e 'Y*'. flhen, an (o)-monotone operator.4 :

,l

-> -Tå'

l'hicli is

cocrcivt¡

tt'ith lespccl to

lt,, clocs

not

exist.

llo ploye this, let us

¿ùssttìllc

t re

cxistence of such anoper,ator" We slrnll

rleriie

a cotrtracliction.

Let rreu-int

11. flhen, there

exist

fiT,

nl, .'.

.. .,

fi*;,e

X* artcl

e

) 0

st"rch

tlat,

Y :{r:eI;l (n - r,nrjo)] < e, i :1, 2, ...,tt\ c Ii'

Colr,qidel

the

cont'ex cotre

lf,

c-

I(, I(.t: {llu;

:r

elrl

À

> 0}

ancl deuote

1t

S

:- n

lçel e'.Í.

ls is clcilr tirat -Il{' c /lit antl

).ri,u

-l S c Il, for

cverv

i.>ó]tîLl-,s, i[ øi'e-I(;*, lhctr

(Àøu -l- cr, a,'F

> 0 for all re S

a,ncl

l>0.

Passing

to limit as

). J

0, tt'e obtain that r, ar') > 0 for all

ø e

S' It

iotlorvÀ

that

(ar, t¡'r)

:0 for all

ø e S.I{c'ncc, rScl<el

r* folcvery

.ø* e--Ilf.

Sincc.T is an

infiiite-c-limensiotral

lineal

spâce' onc ha,s

S I {0}'

\fo\\',

u'c

fix

¿ìrìJ- y e B,

ll I

0.

Fol

)'

)

0, rt

t,hc

(o)-rlonotonicit¡-

of

/,

rvc obl'ai

tlrclc is rf

e

I{f

such

that

A(),y)

0 s'hich is

il, contr'¿ttlicbion l¡ecause t'hc tlitrtension

of

ltcr' (;t(0)-D)

is

irrfi- nitc,

,.] 75

lìIiFtìRTiN(ìns

f ll ll n r'ìr rr, \i., l)-r.c c ìt p n lt u, 'I'h., ConDctilr¡ rttttL Oplintisrtliott ítt..lJtntaclr ,S2accs, Sij[- llo[[ .t Nr¡r¡r'LcìholI lliLcrlr. l,u]rl. -. lltlitur'¿r r\cacìctttici, JìtrculcçLi, 1978.

l:21 ll I o \\'d r t', Jr. IÌ., À.ofllirttnr alllptit: l¡r¡nndntu-uriluc ptolilctns, l',uì1. .¿\n]cr" ùIath. Soc .

GÐ, rlü2 ß7.1 ( l0rì:ì).

¡:r] lir''oì,1 ¿"., 1,. u.1 Ptoltlit¡tt;; ttott-Lìtrtuircs, Plcssc tìc l'Uliv. clc Àlonlróal, 15, 1966'

(5)

ia TI, ÞRECUP

[a] B r o w cl e r', F. li,, Nonlineat maximal monotone opet'¿ìtors in Banaqh splce, ùIt,th.

Ann. 173, 89- 113 (1968).

[5] Cristescu, Iì,, 'Iopologit:ctl 1'cclor Spcu,ts, Nor¡rtlholt Intc¡n. I'uL¡I., Lc¡'tlcn- IÌditu¡a Acadcnrici, BücLrrcsti, 1977.

[B] F i Lt.pat lick, P. ÀI., Suljcctiri[¡, r'csults lol' nonlirrcal nrnppings flotn a Rannch.

spnce to its clual, 11,[olh. tlttn.,20!t, 1'î7- 188 (197:]).

[7] .I a rn c s o n, [i., Orrlcrccì Lirreat Speccs, Leclure Nof¿s in AIath., l4l, Spri¡gcr-Vcllng, 1970.

[8] I{achulovskii, lì. I., OnrrronotoncopclnLorsnrlrìconlcxluuctionals.(inlìussirur), Uspchi ÀIal. Nari/r, tõ, 213-215 (1960).

[Ð] I{ a t o, l'., I)enricontinnity, hcrr.iconLinuii)' arìcì rnonotonicit¡', Dutt. Anter. XIatlt Soc., 70, 548 550 (1964).

[10] I( a t o, T., I)cl¡icoltinuiLy, hcrnicontirrriLy aucl nlonotonicit]' II, BuIt. A¡ne¡, Ill[at]t Soc., 7il, 886-889 (1967).

[11] À'I i n t y, G. J., Ou a nronotonicilJ' utcthod fol thc solntiotr o[ nonìinear crlnations in Ratrach spaces, Ploc. Nal . Acatl. Scl. [,I.S.rt., 50, 1034- 1041 (19û3).

[12] PascaIi, l)., Sl:ullan, S., ;\-onlirrerø.Ìtappings of llonolone ?ype, Sijthoff &

Noordhoff Intcrn. Publ. - Ddíttu'a r\catlcmici, l3ucur.csti, 1978.

[13] Peressiui, A. L., Ot'detctl'1'oltologtc;ill/ccloLSpt.ces, lJarper&Rorv, 196?.

[14] P r e c rr p, R., O generalizate a nolittnii de monolonie 1¡¿ scns¿rl ttti ùlíttty-Bror¿,rle¡, Sem.

itin. ec. Itrnct, aprox. coìtvcx., Cluj-Napoca, o4-64 (1078).

[15] P r c c 11 p, Í\., A![ortoLorticilg propet lics ol Lhe bcsL appro:tínttliott operalors, Itinc¡ant Seminar on Iìnnctional Tlquations, Approx. and Convexity, Cluj-Napoca, 223-226 (1986).

[16] P r e c u p, lì., :I Ii-nronalone besl ap¡trorcímcLtiott operalor p/ri¿l¡ i.s neillLet nto¡rolone and

- (essenliallry) nor (o)-monotone, Alal. Nunrcr. 1'hóor,. Approx., ló,2, 753-762 (1986),

[17] Roôlialelllt', lì.'I., Locctlbouncleclnessol¡tottlí¡teu'ntonolo¡teoperalors, trIlchigan t\{nth. J., 16, 397-407 (19q0).

lìc.ccivccl 10.XI.1986

ñt;\.t,lIDl\IA.t.Icrt .._ lìEYL:Fl D'Á.Nr\LYSIj NUMÉrìt QUE

lj'l

DII ,LIIEOIìI]ì

l)E

L,i\ppììOXIÀIATION

r,'aNALySE

NUUÉ_nI0UE

ET r,A Tt{uoRIE r}E L'APPROXIMA'IION

Tonre

16, N" I,

1987,

pp. ZZ*80

PEAIí SIìTS, pROpDTì t¡zicns r\ND IIOUñDAA,IES

]. Iì.,\SÄ (Cluj-Napoca)

., 1. rn [1] J. w. B*^ce

âncr

w.

R,. zame have studied the peak sets t,lre pro-per_fac-es a,nrl

the

bo'nclaries of .a rineaii

-;b;;;;; H oi C(xi-by

using_the

rlual

-F1';-the¡.-hzùve _provecl

ilrat a

certain's-irbset

of the

cho- quel, bounda,ry'

of

11

is

also

a liounclaly for

'ral, il.l:t"'Ëi"i,"iuriïi'f,ä'ü3Ìlîåi,l î"îj"TllJu'"ilr"

B. n - is

also zr, bòuirclary

to" ¡¡.

*""^"

2. r,ct -1

bc_a _compact

rra'sclorff

space ancl

let H

r¡e

a

lineEr ,subsproo

of

O(.\') $'lriclì sc1irur,a{r,s

,l'

:

l,et, rrs

clcrrote

II+ :

ltr ë

tt

:

lr >

0

oalled a, peük sBl

if

l,hetìe cxists a,n /¿

: 0). r\

nolt-cIìtpl.v

scl u'llir,ll js

an

llen er(,l,ize(¿ ?el,lt, seL.

I.¡oL us denol,e

lrv

J/

thc farnily of alt

ge-neralized peak sets and

by

JJl ttr.e

famil.v o{

rull

rni'imal

g.,1'-erí*rir.,r

peak

sets.

Añ apptication

of Zolnts lemma sho.ws tha1, ever,yY

I( eV

contains a,

K,eW,

L,et

P(II) : {r

e

X: {ø} is

¿ù peak sel,}

I(H):{neX:{n}eV}

B(H) :

U

{K; Ke,T}.

îhen P(I1) c: I(.II) c ñ(fI).

A lon.empty,

convex

sribict Itr of II+, is callccl a

jucc

of

.E¡+

if o t

ct,

{7, j, geIJ't, (1--

ø)

I -t

ag

eZ irnplie, j, i1.n.

A non-etnpty

snbset

E of H1 is a face iff (i) n + n c:

ú), øütr

c f) fot all

ø

e

1,,.,., and.

(ii) /e D, teZ, 0 ( g

<

Í

implies

9e Ð

(see l1)1.

A

face Iù

of Ir+ is

saicr

to

be proper

if Ir 1-H+ ; this is

equivarent

to 1t'E.

r-'¡et

's

denote

by /,the family of all

prope-r faces

of E+

anct

by

-ilf

the family of all

maximar

prorer

fäces

; ad

ap^plica,ti;i,

;f

zorn,s remma shorvs

that e'ery

proper faôe

is

containäcl

i" íil^ili,"åt l"opu" t*.".

I

Il iglt

(lalSchool ol'Informalics

ecr I'urzÌi 1 40a-- 1 12

t)t00

-

CIuj-\'apu'a llot¡tania

Referințe

DOCUMENTE SIMILARE

Ky Fan studied in [4] the existence of solutions for some systems of convex inequalities involving lower semicontinuous functions defined on a compact convex set in a topological

In this section we shall establish two existence results for equation (1.1), involving an operator N which is increasing with respect to L, in Theorem 3.2, respectively

Devore, The Approximation of Continuous Functions by Positive Linear operators, Lecture Notes in Mathematics, 293, Springer Yerlag,7972'. Starrcu, Approxintation of

Inspired by some results of L. Iqbal [r] proved some extension iheorems for bounded or conrpact bilinear operators defined also on subspaces of the fom-t z x

lrit l'nttt:lioits, Sl,\Àt .J. pioL1a, G., I)i tuur formulrt per iIcalcolo rlelle nttlic contbirrrLloríc, AtLn. O., IneqLtctLìttes bcluectL uritlt¡ncllc

On the other ltnnd.. \rrr¡lrr¿¿¡r tttçtp¡tiurlsol notLoLottcLgpe,)ì&lt;1.. Acaclcuriei- Sijthoif &amp; Noolcìhotl

fn this section r,ve apply Theorern I and Theorem 2 to absolute Borel sr.mmability.. Orlr result is the

f., 'An àdentily Jor sþt'ine funol'ions uith øþþlicalòons lo uariation ili- minishin{ sþline