MATHEI\,I.4.TICÀ
-
1{E\¡ UE D, ANAI,Y SÐ NUì{]trRIQUE ET DÐ THÉORIE DÞ IT'APPROXIÙIATIONL,iTNALYSE NUMÉRIQUD
BT LA TIIDOIIIE DE I,'APPROXIMATION
Tome 9, No 2, 1980,pp. 233-243
ON soME SBQUBNCE TO F'UNCTTON
TRANSFORMATIONS
by
R.N. IIOHAPA'I'RA ancl G. DAS (Santa Bar'bara, California)
l.
Supposetinal
q,,2 0 and
(1,,+ 0 for i[Tinitely Ílany valeus
ofr?,. We.shall
ict x aíd z
stand, throughout,for
a real and complex nnrlber fespectivelv. I,et r
d.enotethe radius of
cont,ergelÌcèof the
power seriesæ
D,ln" (, < -). The analytic lunction
reprcsented 1ly1¡it power
series'ioi
1rl
< r is give'
by(1
1)
q(z):
är,,r" (lzl <
r).Given an inïinite
series) a,,
wibnpartial sum
{s,,}wc
sa)¡that
the rnethocl(J,q)
is,applicabletof-
n,,,ifthe
seriesþor*r,,r'
corl\¡er€lesfor lzl{
{ r, say to q,(z), and the
sequenceto function tlansforrnation J'@) : -
q"(x)[email protected])exists for
0( x 1t'. Further, if
Jo(x)'l' (x
--'r-),
Thenthe
series2a,is
said.to
be surnûrab:ì(J,q) to
t.. ILis
saidto be
absolu- teh, strnrnable(/,
q) or summablei/, qltl
Jq(x)e BV
(0,r) i.e.S rOf
far a
<
oo. BoRwnrN[1]
has shownthat the
method(J,Ð
is regularif
and. onlyil
q(x)- co
asx --+./-.
BoRwErN[1,2, 3]
considered,the
inclusion relati-G - L'analyse numóriclue et la thóoric de l'apÞroximalion
- Tome 9, No 2. 1980.
234 R. N. MOHAPATRA anct G. DAS
2 J ON SOME SEQUENCE TO FUNCTION TRANSFORMATIONS 235
Proof.
(i). Consider the seriesfor
rvhich thenth partial srlm is (-1)'"
'l'his serics is rlot convergeut but its Borel transfolm
B(x): c-ÌD t-
Øl)',x,,fnl :
¿-2'e BI/
t0,.o). Thus the series is surnmable lB l.tiii:i,* eu:0
(n: O),
arrd.o,:
(sin nt)|rc(n:1,2,...).
t'he seriesZan
cottt,ergcs for ¿r11 I. After sinrplificationit
can lte seenthat if this
series\\¡ere s111n111ab1e lB I
for I :
J/then
the intcgral ons betwee" (J,Ð
and .(J, 17)'rethods of su'rmability. Das l7l
has obtai-ned inclusion relation betrveen
lJ, þl
and.lJ,glmethods.
As
*'ell-k'own partic.lar
casesof the
(J,q) nethod,
',e
have the AbermethocL
(A)
rvhen Ç,,:
(n+ 1)-'
(see [9, 51,-ifr"
rnethod An, when
ç, : _ln+ aì,^-
,,: I o, J (t"" [l, 5]
(40is the
same asthe
Abel method) andthe
meblLocrBo u'hen r1,,:
(l(n,I u.i l))-t (8, is the
sarneas the
Borc,l rncthod) (see [9-],p.
222).A real
methodoi s'n'ration 'r is totarly
regrrlaril
s,,* s
ir'¡-riicsthat T-lirlit of
s,, -+ sfor all fi'ite
andinfi'it"
.,Ã
n,+ @. rt is k'ow'
that
a llecessary ancl sufficicrrt condition Tol a real triangnlarnratrix
tr¿rns-formatio' to be totally
regularis that it
shorrldbc r{ular a'd
posiri.rc (secl9], and
[10]for
a geueral resnlt onthe
subject).'Ihroughout the paper *,e shall use the
follorvì'g
rrotatiorrs :For tr¡'o
sunrmabirity processesA and u, A ¿ B
u,ir1.rea'
thab ailseqrlences (series) srrrunable
(,{)
are surnnable(Bfl c rvill
denotethe
spaceof
convcrgent secluences.2n&,,
t
(A)will
meanthat
the sedes z,,a,,iÀsurnnableby the
rnet¡ocr(A)' rf in this
statement rvc replace(A) bt c then it rvill
rneanthat
the series )r,a,,is a
convergent series.r,, = (4, B) u'ill stand
'or the staterne't that
,,s'rnnrabi1it1. (A)of \ø,,
irnpliessumnability (Il) oI
Ea,, e,,,,.::,T
ä'Tl,:. [o,],1'*'1""
J,:^iÂï ./ oj
at point.
Thus lve can conclud.ethat nrability
lA*| of infiuite
series a¡c:
0. This horvever raisesthe
foilo- conversellcea'd
lA* I arcnot indepe'äà,
",t"jlil iåi:l \Tå åfT:'Jt;Ì.,,î,j the
answcl'.Wlrcr q,,: (tt,l) ',
sothat
(rI,q) is thc
Bor.cl mcthocì(B),
r,ve shu*.that thc
Irolre'ties
or' conr c r g,,nË*',iocr .ì,",r"ãi;ìiiv-'¡ï¡ ro, a, inlinirc
scr-ies are ìrrclcpe'de'nt of cach
ätn"r. ou,
,..rrrak is.uipåitea
b_.,pRolo*srrr(tn l. (i)
7-lterc i.s (¿ sct',tcs surnrn,abl,c¡n¡
w,nicttis ttot
t.on_acr gent.
(ii)
T'hcrcis
ct sct'íe s u,Jtitrt, i,s ctnacrg*tt but not sr.tnrndtrclts l.(2.1)
I:
æ
,t :0
@
r- "
5-
/J\ (x,,sirr (¡¡-.1_ l)-r,)/(ø* l)
! d,xwill
be conr¡ergcnt. I)cnotingthc
term iusidethe
nodulus signby I{(x,
1t),'we have
/t(r,
r') ==nr i.-"
lØD
(x"¿ít"rth'lþ1,+
1) l):
I r .0
: N,1,_2,si"'yl2 Si¡(tsinl,l) _
^i 1e'.
Thus
(2.2)
lt
tc-2r sitr't'tz sin (x sin y) ldxChoose
I > 0
so smallthat
sin(r
sin v)is
non-ncgative. 'I'henthe
sccond integralof p.2)
isnot
greater than{a'-2tsitt't'lz sin
(r
sin¡r)i:v sin ),} dxI
y 1C-2:v sí\1 ylZ dX :,,\
T c'tlx I
s1n
ô
ô
I
1' 5
4 +o
æ
¿ -2r sill¡ t'12 ,l
8-r
e-2v slt\2 y12 (lX:
O((sin' ),12)-')Choosing J/
to
be differentfrom
an even multipleof
æ, lve havethe
altoveintegral
bounded.But the
clivergcuceto infinity of the first integral
of (2.2) shou'sthat I is
clivergent. Ilence rvc establishthc
assertion.3. In
rriewof
$2
a natual question is to obtain rrecessaryand
suffici-ent
conditions on a seclrletlce {e,,} srrchthat
2ø,,e,,is
eithersurlmable
I B Ior
lA"I
(o-> - 1)
rvhenever')øo is a
con\¡er!îent series.Along this
lineis the follorving
result :TrrrJoRDì{
A [15],
eo= (c, IAD iÍ
an,d onlyif
(3
1) )lAe"l<oo,
(3.2) Xl.,ltt,-'r<cx¡.
236 R. N. MOIIAPATR.A. and c. D,{S
4
THEoRErvr
1'
Let qn >-0
ønd (-1, q) ruethocl be totøil,y regurar. Thene,e
-
(c,ll, ttù
ontyif
(3.3) :i ; ) lA.,,l < co,
,ønd.
(3.4) hold, ahere
Zlu^l q,lnnl 1æ,
(3 5)
ir
0] {*-l,t{4)eqx¡}
axfor
euery measurable, c.ssent,ially bounclcd, real futoction q(x).THEonEu
2. tt¡
tr,r> 0.
Then the sufficíent cou,cl.itionsfor
zane, e -lJ,ql
wheneaerr,=Ð ao:O(l)
øre (B.S) and(3
6) i , zl r,lcl,f
ü,1<
.o,zahere
(3.7)
þ*
R e m a r
k.
xnof
(3.5) a1wa1.5exists
for q,,> 0
(see [g]).d.
We sha1l need the follo.w,ing lemrnas :.
r,piriurr1 (i61,
lernmaB). If
Zg,(x)s,, cotl.aergcsfor
0< x <y
and.its
stt'no tend,sto a tirnit
q.sx
--+r - o
taheneaer,,, i,
,Lrrrr.gent, then trøereare numbers
M, X
such,that
ZlS,@)I <
r'l{for X:q x <r.
r,ÐMMA
2 (lr3l,
see also t15l). ry ct sequcnce {þ,,) o"f eren'tentsin ct Bcmack sþacefi
hìeß the þroþerty that thereis a
,untberH
suclt,rr.rllà+l,ff <ø
,::,,::,,1::":euery
set of s'igns!, tttenrT,f(p,)l<q for
eacry tineør func-T,EMMA
3.
Letq* >0
øncl (J, q) methrct be totalty rcgular. Th,en Za,r=,çand
Zanen=
(J,Ð
,imþlics u,- O(l).
237
Proof.
If
underthe
hypothesesof the
lemruae, is not
tr-ouirded, thenl$t"n
Iu, I: f
co. Then there exists a seçlrlence of positive, non-decreasing sequence
of ltositive integrcs tru,
v:
1,2,
. ..,
suchthat
1.,,u I)
ur.Choose &,, such that
au:0
þo¡ nu) and {i.r,:
y-z sg11-le,,u6t :"").
Thtrs
)
lø,,1( Ð r-' q
oo. ISut rvhen ø:
1xv, øt,e,,: arr€,.y:
y:21.,,u1;'
1,and. so
the
seriËs )a,,e,,dir.ergesto f
oo. Since (J,q) is
assumedto
Jre atotally
a regular methocl ),u.,,e,,is l1o11-srlm1nab1e(/
q).
Thusu,:
O(l).r,Br\,Ir{a
4. Lct I" ? 0 qnd
(.1,q)
nrethocl be totøll1tregulør.
Tþerte,e
= þ,
(J,fl)
orttyif
(33)
h,otd.s.Proof. Writing [email protected])
f.orthe (/, q)
nrean oTthe
series )ø,,e,; rve have (4 1)where (4.2)
[email protected]):q,(x)t
[email protected]),,
Sincc,by
hypothesis and I,enrma3,
a,,is
ccrrtvergentand e; :
O(1), we hatte5 ON SOME SEQUENCE TO FUNCTION TRANSFORMÀTIONS
a
We
sha1lfirst obtaiu e, such that
e,,e (c, ll,ql) and
th.en obtainresults
for lA' I and
lBI by
assig'ingparticula¡ v¿1¡", to qn. oat
resurtswiil
bethe
follor,ving theorerns :%"t
,t
q,(x)
:\Q,,r"
oÐ
oo.u.f,ln,,*"É nr.,l
,-01 À--o
I:o (f w,,t.r') o(r),
[email protected]))
dxd xn dr
whenever lxl <r
sincethc
raclius con\¡ergenceol
}q,,x,,ts
r clrangcol order of
surnrnationin
(4.2), we obtain@û
I
uoroDqux"Þ:0 1t:. h
'Ì'h.us by
(4.3) ;i ,1,(x)-
By
Abel's transformation(4.4) tt"@):
å,,n0(.0 är,.',)
provided
that
(4
5)
,,]3¿ (s..,,ø,,x'')
,,'
q(x,):
o.Ilut by
h¡'pothesiss,
converges,by
I,ernma3,
sinceer: O(1)
aud since Xqr,ø"is
convergentfor 0 < * 11,,
Ç,,x" --+0
as n, --+ @, Hence (4.5)holds and therefore (4.a) is
valid.
Norvwrite
(4.1)in
the from(4
6)
J"@)
:
)go(.t)so where(4.7) [email protected])
: (q("))
'|l,u (1"xoæ
D
238
(5.2)
provicled
that
(s.3)
R. N. MOHAPATRA and c. DAS
6 I ON.SOME SEQUENCE TO FUNCTION TRANSFORMATTONS 239
'since, by_hypothes-is,-/(ø)
existsfor0 ( x<rand. J(x) +ølimit
as )í--+'-+
¡-
whener¡er {.s,,} conr.erges,by
r,emrna2, theie' exists
nurnbersM
andX
suchthat
(4.B)
[email protected])l< M (forX <x<r
andfor ail
z).It
folowsthat
(4.9) lirn sup
[email protected])I <
r.lu/.But since, as
x
--+ r- ,
\q,,x,,--+ oo, and.,"
,å
q,¡x,,f c7þ;): 1- (í^ ø,,o'øfa)
which tends to
1,it follows frorn (4.7) that
g*@)-
A7,e¿. Ilence(4.10)
|[usol :
)ollin'
[email protected])| ç liruinf
[email protected])l(
timsup
lgoçç)l< M, by
(a.e).-
ó._Proof of.theorent,1.
SincelU, q)l C (I,
q), rreccssitl,of
(3.3) foltor,vs{ronr
r,emma4. rt.proving the nlcêssiÇ õr
(s+¡
rve sliall ube áoiations of I,emma4 lor
[email protected]) etc. r,vithout restatement..
.Sin¡e,f(r)
existsfor 0 ( x <
1'a'd.
sois differe'tiable i'
10,z),
weobtain by
straightforrvard calcrrlation.,
(s.1)
J'@): _
ä,.,l,*((:,*D,
q,,*o t,[email protected])),By
Abel's transformation,J'@): - å ,"o,, (,,,*{(p, ."),rrrl)
ft con be
checkèd.that
(s
s) *l(þ^r*')rot,r) : (Ë" v,*')høt)'
where
I/ ¡
:
ÇtQt¡2qrq*-t+
. . .+
mc),c1e-u+r-
(å+
l)qt t-tqn-
l¡QeT'-
(h- n I \)q,Qu-n+t: - @f
l)qerr 4o-
(h- l)hqoTt- ..' - -
(h-
2n-l l)qe_,ttQ,
it
being understood Thatq,: 0 if r is a
ne-gative integer. Nor'vwe
sepa-ratelyionsider the
cases0 <
/¿<n, n <å < 2n, h>2n. In
each caseitcanbecheckedf:hal-Vo ( 0for allnandlor0 ( x1r
rvhenever t1n2O(see
McFadden tl1l).
Ilence it
followsfrorn
(5.5)that
(s
6) jl * tip, ,rør\øøt)lo. : - (å to*) [email protected]) : t,
since q(r) -' oo as x
--,r-.
Norv
fron
(5.4), we have b1'' (5.6),*
\ l.l"@)lttx { Ð lr,,llAu,l
o:":0
jl* tn or*\oø)l a.:
@
Bnt
since{r,,} = t*,
{u,}et,n
and.*{nq,,xhfq(x)} -
:Ð, lr"llae,,l a ta,Ð l1\e,l (
1(,by
(3.3) and thefact that
s":
O(1)We are
given(5.4) that
(5 7)lJ'@)ldr (
co. Sincell(x)l
clx1Ø, it follows
froml/r(r)
Idx 1cÐ, which is the
same as1im S,,,
tn+ú €tt -
*l(ä,*r
[email protected]):0
I
jt¿
s,e,q,{(df dx)(x'[email protected])))ctxI
@,240 R. N. MOFIAPATRA and c. LI-AS
I
B ON SOME SEQUENCE TO FUNCTION TRANSFORMATIONS 24lL
THDoRrtlvf
3.
Ða,,.is
conuergcnt int'þlics }a,,e,,= lA"lþ- >
-j 1) if
ancl ort'l1tit P.1) ønd
(3.2) ,'olcl.Proof.
Su'fficierccy.In this
case!
d):@'[email protected])):
(1- x)(ríil-t((l - x)ti'- x (l
-l- ")).Thus for-every.c-onvergent seqllence s,,.
Bnt
(5.7) holds (seellsl,
lemma2) it
and only if
(s.B)
rll "', ,,q,*
@" [email protected]))dx <
Hbctls)(,
for
sorne atjsolutepositive
constantH. rn particular,
(5.8)implies that
(5.e)
!t
¡\ll n,,,q,,+
@^[email protected]))I " n
ólr:0 a* I d
tl* x" lq x
>0(x {[email protected]|_n);
<0(*>1t,[email protected]+1-ln).
for
each h, and ever)¡ seçlllence of signs. Hence,by
l,emrna 3, lve have@
Ð
d
If
rve rvritef
@)for
@"[email protected])), n,e hat,e,I
rLl\u-l-a1-11(5.l0)
x' clxqq
ds
for
every bounded, realfunctior
[email protected]).This
completesthe
proofof
'Iheorem 1.Proof of theorent,2. We are gir.en
that
s,,: O(i).
Sincer il-7 ¡ il _1
Ð-trt*: Ð
¿\eosof e,,s,,,we have D
noEÀ <sr1pf+f p iArelf +
O(1):
O(1), sothat q,(x):
O(1)Ë q,,xt.
f1ettceq" (ø) exists forlxl<.r.
Since r7(ø)
* 0 for lxl <r, jt foltowJihat [email protected])
existsfo¡ lxl <r
as apower series expansion an<1 therefo¡e
[email protected]) is
diffe¡entiablein
[0,r).
Nowwe
haveJ'@) :
[email protected])l-
J"@) asin
(5.4).But
rvhenever)lAe,,l <
co, rve ha\.e,dx: \ *
@"lq(x))ctx-,u,,1,*,, fr {*"/,t{ù)a* :
:[email protected]þ.
-l-1+ n)) -f(0) -Í(r) lfþøl(ø, + 1+ n)):2f(nl(d-i- I + n)):
:
([email protected]+ 1+
n))" (o.+ 1).r'(n +
of 1)-*-t :Q(1x-e-t).
IIence frolrr Theoreln 2 rve obtain
D
@ 1.,,1 Çuþu-o (D
lr,,llr."-")Ai) : o (D n
'le,,1): o(l),
by
thc ,'roi.n"r,r.
tYeccssitjt. We
lirst
observe th.at we donot
imposeany additional
res-triction by
assumingthat
(3.4) holclsfor
every boundcd coruplcx Tuuction 9(ø). Wenext
setq(x): (l -
*)n(r: l=) in
(3.4).'lhen the integral
is girren b¡,'l
i,' - ¡' * ut - x")a,'x'))d.xl :
1,
i
(t - x)o+i*"n.|:
: Itl(l I
aI
i)I-þø| l)lt(rø +
2+
ø.)| =
(1+ i +
ø")lndt.IIence
2,,1e,,1 A,l,
(r -
*)nh ttt -
x)æ'rtr+¡r,* i.e.'),,(le"l ltr.)<
c<t'I'hus
the llroof of
the theorem,is c'otnplete',r [email protected]))e(x 4"
E¡
J d x"[email protected]
th
as befo¡e
f
[email protected])l dx<
cn. We have onlyto
showthat
JlJJr)l
etx<
x:Now
@"
[email protected]))
d.x< h,l
e,, qnþo < ltJ'@) dx a\
s,e,Qn ¿ n:0i
tløæ
This
completesthe
proofof
Theorern 2.6. In this section u'e appl1,
Theoreml and 'lheorem 2 to
ol¡tairr results for summability methodlA,l. In this
case/:l,q(x):(i-")-a-r =
: Ð
@ ¿i" *".n:Q
<co
242
IJ
R. N. MOIIAPATRA and G DÀS
10
7. fn this
section r,veapply
TheorernI and
Theorem2 to
absoluteBorel
sr.mmability.I' this
caseq(r) :¿Í :L @þl),
and./ : oo.
Orlrresult is the
following::rHrloREùr
4. e,e
(c, IBI )if
and, onl,yif
(7.1)
X,,lAe,l<
co.qnd.
(7.2)
),,{lu,llni}.*.
Proof. I-,et
f(x):
x"[email protected])= c-"x".
IIence f'@) : -e-r
xtt!
n,y,,-ts-":
¿-ryn-t(12-
ø).
So(7.3)
Í'(*) : >0(x <n);
<
0 (x>
n).Sufficiency.
fn
vieu'of
(7.3) rve Tindthat
11 ON SOME SEQUENCE TO FUNCTION TRANSFORM,{TIONS 243
pROBI,EII.
Does
thereexist a
serieslvhich is
convergentbut is
not summable lL | ?We feel that the
answerwill
bein the affirmative.
Concerning the convergence factorsfor
seriessunmable I,
rve conjecturcthe folloli'ing:
cooJEcTuRÊ. €n
e (t, ILD if and only if
X,,l
Ae,,l <
coand ),,{l
e,,l(talogn)} <æ.
RDITDRENCES
:[email protected]) -.f(0)) -/(co) * f(n)) :[email protected]):2%oc-n,
since/(0):/(*) :0,
Nory)u l.,l Çnþn:
'2Ð,,(le,,ln'c -,f n)=
X,,(le,,lln") < *
Nccessity. x,,
tx S n). 'lhen
f'(x)[email protected])dx
Choosep(r) :1 ("<n), a1d q(x):-1
Strbstituting
the
r-aluein
(3.4) we seethe
necessit¡'part o1 (7.2).B. If
one sets q(ø):1og(1 l(1-x)) and r:1then (/,q)
rnethodreduces
to the
logarithrnic method(I,)
(see[a]).
Consicleringa
series )1a,, strchtlrat
F(x):Ðn&nx."is
ø-(t-t-r¡,it
is easy to secthat It(x) is oI
bouded rrariationover
(0, 1) andthus making L¡t.oe lAl.
Holveverthis
series isrrot
sumrnable (C,å) for any
lt,) 0
(see[9], p.
109).Since
lA IC lI,I
(see
[12], p.
453)not all
serieslf l
are Cesàrosummable
anda
fort,iori convergent.This
raísesthc
follorving problem :[f ] B o r rv e i n, D., On melhod, of sunnnal.ion bøsed on þoaer series. Proc. Royal Soc. Edinburgh,
c4,342-349 (1957).
12) - , On tnclltod,s of summat|on bøsed, on integrøl funat'ions. Proc. Cambticlge Phit. Soc., 55,
23-30 (r9s9).
,f}l, Ott methods of suntntability bøsed on integrøl ftr.nctiort.s. Proc. Cambridge Phil. Soc., 56, 123- 131 (1960).
l4l -, A togarithmia m'etolrotl of summability. J. Londol NIath' Soc.,'J'J,212-220 (1958).
[S] -, On a scale of Abel lyþc szmotnability ntethoils. Proc. Catnbridge Phil. Soc., 53, 318-322
( le57) .
[6] Bosarquet, L. S., Notc on Conuergance an'd' Summabilily Faators, (II)' Proc. Irondon
llatir. Soc.,5ll' 295-304 (1948).
[7] D a s, G., On some methods of summability. Quarterly J. Math., l7' 244-356 (1966 ).
[Sl -, Iq.clttsion, T]rcoyetns for an Absolul,e fuIethod of Su.mmabi,lity, Jour. I¡ondon Math, Soc.,
8, 467 472 (1973ì|.
[9] IIarcly, G. H., Diuergenl' Sevies. (Oxfortl, 1949).
tl¡l Ilurrr.itz, H. LL.,'lolal llegr,r,lnrily of Ge.nerøl'1'ransfonnalíor¿s. Ilull. Arner. llath.
Soc,, zrc' 833-837 (1940).
Illl Mc Fadden, Ir., Absolute Nörluncl Surnnrability. Duke I\{ath. Jout., 9, 168 -208 (1s42).
Il2l Molr¿nty, R., ¿rnd Patnaik, J. N., Ot tlt'eAbsollúeLS'tr'ntmabilill'of a7;ottrier Series. J.I,olrclon Math. Soc., 4rì' 452-456 (1968).
IlSl O rIicz, rl[. W., Beitrrige zuy '].'lrcorie det Orlhogonalenlwichh'øtgcrl 11. Stutlia Math, I' 241--25s (1929).
[f4] Prasad, lJ. N.,'fhe Äbsolute Surnrnability (r\) of a Ëourier Series. Pro¿. Ldin.\latlt,
Soc., 2, 129-134 (1929)'
[r5] Tatchell, J.B.,,A Note ol a Theorem By l3osanquet. J. I,onclon Math. soc.,2Ð, 203-211 (1954).
,[16] Writtaker, J. ][., The Absolnte Surnmability of Iroutier Series. Pzo¿. IÌd'itt. NÍath', Sc¡c., -
:¡, l-5 (1930).
American Un'iuersily of lleirut, Beirut,
orlæbanon Uniaersily oJ California, Santa tsarbara,California, U.S.A.
Reeived 17. IV. 1980
i )t',',*,',
ct x
:2,'n
e_-"": i r'@)[email protected] :(i
(5
+
It
f'(x)dx:
(x)dx x dx
Ï
x dx
f' f'
0