• Nu S-Au Găsit Rezultate

View of On some bivariate spline operators

N/A
N/A
Protected

Academic year: 2022

Share "View of On some bivariate spline operators"

Copied!
6
0
0

Text complet

(1)

142

M

BAL'A'zs

6i

The

condition

III. is the

same

with 4" if we lake A:0' the

nota-

tion ã : M0 *

Bo)t has been used'

The conditio,',,of the

theorem being satisfied we

lnay

use

it

ancl we

obtain j)-").

MATHEMAîICA

_

REVUE D'AN,{I,YSE NUMÉRIQUE

ET

DD TTTÉONTE DD I,"{PPROXIMÄTION

L'ANALYSE NUMÉRIOI]E ET LA THEORIE I}E

L'APFROXIMATION Tome B, No

2,

1979,

pp. 143-163

RDFERENCE

S

n.l B a 1 á z

s, M.,

Conttibution

to

the stud,y of soluing the Equalions in Banack sþaces'

óoctor Thesis, Cluj (1969)'

l2lBalázs,M.,Goltln.r,C',DifercnlediaizatelnsþaliiBanachçiuneleøþIica!íiale toz lnomanåö.

'ðñitlí

c"rä"teri-u.t"À'fi"ä, 7, 21, 985-se6 (1e6s).

t3l

Balázs,

M.,

GoI¿ner,

G., on Aþþroximøte soluingby sequenceslhe Equations in Banach SPacøs (in Press)'

t4lPåväloiu,I.,Surl,AþþroùmatioødesSolutionsdesEquation.sat,øidedesSuites a Eléments dans un Esþaae de nono"oi."f!ái-' À,nat''tL¿orie Apptox' 5' 63-67

(1e76).

t5'ì U 1'm S., the Ordinary Steffensen's Melhod' for Soluing Nonlinea'r''Oþeralor Equatioøs' Lur v ¡

"' "inî"'räõ.-î"î;¿i"i''ír;i' i

rnr"t' rizl,

/',6,

10e3-10s7 (1e64)'

Received 16' II. 1970'

ON SOME BIVARIATE SPLINE OPERATORS

by

P. BLÂGÀ and GI{. COMAN (Cluj-Napoca)

Introd,uction In

,some

previous papers [9, 6, 5] it

was studied the spline operator

56

aS

a

genéralization

of

Be¡nstein's opefator which asso-

ciates

to a

functiãn

/,

dãfined

on the interval la, bl, the

approximation

(1) (Sofl(") :

n*l¡

Ð N,(x)Í(1n),rn>a,h>0,

where

6:{xj!I}, with

(2\ x-t: .,. : xo:

&

(

.ør

(

\/

and

X¡-p

1 I¡,

'i

-

{ xm-r1b : x*:

(3)

,(

9i _- x¡-¡|...*xi-t

h

lr

+ l, ...,

ffi

- l,

, i:1,...,rn+h,

(4)

N¡(x)

:trM,(r), i:1, ...,

7n

+

Þ

and

where

M,(x): l*,-o-r, ..., xi; þ + l)('-*)u*l isthe (Af l)-th divi- ãed

difference

of the function M(x, t) :

(h

+

1)(l

-

x)'*

with

respect to,

the

variable l.

The

approximation sa

/ is a

spline

function of the

degree h. having

the knots at the points of

Ä.

using the operator sa and the

method pfesented

in lL2)

there _are constructãd

so-"- birr"tiatJapproximation

schemes

on

a triangle, probiem

also

mentioned.

in [13]. As-an applical.ion of

these schemes are given some cubature fo¡mulas

on a

triangle'

(2)

ò

¿ve

obtain lor

g(x,

!) : l, x, y

tespectively

(sg)(r, o):i,N,(r) 'Ë' N|#,h) ,, ,Ð' *i (#,r)

ON SOME BIVARIATE SPLINE OPERATORS

and taking into

account

the liniarity of

G1, Gr, 144 145

Now, appliyng to the

function

/

:S¡; with

L,r:ti ,. - lL:O < ri

<

P. BLAGA and GH. COMAN 2

l. Let

Gr,

G,

be

two

polynomials

with the

properties

'.Go@)

>G,.(x) Þ 0 for x el0, kf, k>0, D:{(x,y) eR'zl0 < r <¿},

"Gr(ø)

( y < G,(x))

anð'

y :"=9, f G, an

application

which

transform

'the

dornain

D in the

square 10,

k) x

10,

kl. If

one applies

to the

func- -tion

/: D -*R the

operator

56 with to the first variable, we

obtain

(s^fl(,,%ryt ¡c,@)):i:,r't,çx¡¡ltt' ¿+ c,(6,)l'

fr,,

¿

+ c,(8,)]theoperator

( flr-, th:t'no: ..':ttn¡+rf

N"(4 Ë' (#thr|'"ryï; +

G.(q,)J

:

n+þ

(ss)(ø,

y) : D

i:1 ,ft+þ

_s\

¿-t

j:1

G,(4ì-GlEù y-G,(E¡)'

-1,

:!Ç

*

G.(€¡)

l: r.

,n+b

(SS)(r,

ù:D

i:1 1,N,

N,@)l

In

'rse have

.(5)

(sf

)(x, v) :

where

tn¡

<t'¡*r,, j :7, ...,

%i

- l, i - 1,

.

'.,

ltr

*

h,

The operator

S. generates

the

approximation formula

{6) f : S/* R/

where

R is the

remainder operator.

lfaking in

(6) some

particular functions

Gr,

G,

and some convenient

partitions a, Ài there are obtain

approximalion-

formulas for

various domains. Such,

if

Gr

: 0, Gr: k ald

L¡:!-r:,.. : lo:0 1!t.< .,.

:!n¡s, i:1, ..., rn+h,

!¡1!¡+,, j:1,...,tu-1,

then the

operator

(5)

becomes m+h r+s

(s/)(", y) : Ð D

wn@)ñ,U)f

G¡,

n¡)

'-L J-t

stud.ied

in l2l.

If.

Gt(x)

: l, the triangle T^:

tor

(5) becomes

,(7) (s/)(ø, r) :'f^'Ë'

",tøM (h)t(,,,ff ni).

_Respecting

to the

remainder

term of the formula

(6),

in this

case,

we have

h

G^(E¿)

-

c.(ErJ

Gr(x)

:

h

- x, then the

d.omain

D is

transformed

in {(*, y) e

R2lø Þ 0,

y > 0, x *y ( h}

and,

the

opera-

^-i

,,,

- ri,;+i ---;t- *.'

'

' -l ti-t

and

- -j.

", -

"-r, Fì-l Li

NiU)

: æLll.n*r-,, " ', tiii

(s¿

* 1)(' -4'i]

'fot j : 1, ...,

rL¿

*

s¡,

i : 1, ...,

r.n 1- h.

Lemma LIf GL,G2ePytkenSg:B, IeP¡i.e. Sg:g,g:

:1,

%, y.

Proof. Using the

identities

m*h ffi+þ

Ð

¡rn(")

: l,

D._,

l,N,{*) : *,

;$ - L'analyse numêrique et la ühéo¡ie de l'approximatiot

- Tome g, No. 2, l9Z9

(3)

746 P. BLAGA and GH. COMAN 4 5

and respectively

t"-tr: .,,:t"o:Q,

ON SOME BIVARIATE SPLINE OPERATO1TS r47,

L

e rn m

a 2. If Í =

8,,,r(To) lB), then the rent'ainder term of the formcùa'

(6)

kas tke reþresentation

,l h vrt_, ,i|t111,ì

-

tvt uilt- | | |

; L1

'rt ! | L

i-I, ...,

in,

5 0

m-it7

(R/)(ø,

v) :

Kro(x,

y;

s)/{2,0)(s, 0)ds

f

Kor(x,

y;

t)fto,z\(0,t)dt

+

-ll

-'tt-il

' t:n:'0,

ti,

:

n+t

=

/1,

t1t'-h+Þ:

:

ti,-t,+t

:

h,

þ -

1, . . .,.h"'i

:

m

I

7,

.

.,

n't,

-l

h,

+ I\ o-(*, o,

s, l)/(1,1)(s, t)d'sd't,

Th

It

follorvs

that

uhere

I(ro(x,.!i

s)

: R6,r¡l(x -

s)+]

Kor(x,

y; t) :

Rø,nl[(y

- t)+]

Krr(x, 1',

s,

t):

R(", vll@

-

t)t+(Y

- ¿)il'

Proof. Using

Taylor',s

formula with

the_integral representation

of the remäinder

t-*erm

[B], for þ :

q

: 7' and taking into

account the-

lemma

1,

we

obtain

(B) 1¡:

i(i-1) L : f

-tlt

L- t, ..,,, þ 2øoh

b(24-1>

- 1\'

5

+ r, ...,f**o*'''

--t;;-/t,t.:t , " -l

h

-

4n

+k-i+',

o

:l-+Ol

m

!

h,. þ

:

min {m,, k), and respectively

i(i -

r) lo,

j:1,...,þ

2h(m-i. 11)

þ(2i-þ-,1)

! (y -

t)+Í(0,2\(0, t)dt

+ 2h(m-itl\

(R/)(ø,

-y)

:

R

(, -

t)+ ¡(z,o)(s, O)ds

f

r^^^i:ll

t'- tlilt-t+n-j+2,.1- l l, ...,

/l'1,

-i'+ h+

1,

tl

þ:t¡¡'in{*-i+I'h}

1,

n 5lt, - s)ï(r'-

r)+/(1'1)(s,

t)dsd'tl:5*,' ,¡l(x -

s)11/{2'0)(s,

O)dsf

Tt, o

lor i:1, ..., w

and

\,:,ri: i

tr -- Ir- i+l

t

h,

j- 1,...,h-i+1,i:1,...,h.

'

'l'he explicit forrn of the operator S will

be given

in

some practicaF

cases.

1".

The :l,inear-linear case

(/r:1,

m, >-

2). Taking into account

(B),

(9)

there

are obtain

1,

-"-J,,,+n;:jrt, j :1, ...,

nt

- i +2;

'i:1, ..., ru'!l

and

the

operator- (7) becomes

ü+1 m-¿+2 / '.-. \ /-.

(10) (s/)(r, 9: Ð"'-f,' *,(*)*;(h)r(îr,+r),

i:l i:1.

* I t,,, ùl(t -

t)+lf(0,2,(0, t)dt

+

!) ",",y¡l(x - s)î(y -

l)!l/t1'1)(s, t)dsdt.

2. In the

next

it will

be studied

the

operatot

(7)for

some given

parti- tions A and

An.

,For nt,: l, ni: 1, s - k -'i + l, the operator'('Ì)

becomes the Bernstein

operator on the triangle Tt, l12l'

Let A

and. Ä¿

be

given

uniform partitions,

i.e.

*-þ -

: 1,n: Q, xt: ^ ! h Xnt-t:"' nc-|.- k, %*:

?n rn : %*¡p: lL:

(4)

P. BLAGA tnd GFT COMAN 6 148

rMhefe

I ON SOME BIVARIÀTE SPLINE O?ERATORS r49

with Nt(r) : Itn-

h

fnx +

K"o(x,)r;

s)

: (r-r)+ -ifr- x- (h-zx)nl(lø-2s)¡-

- |tr. -

lø)*(h

-

s), Ko,(x,

Y; t) : (1 -t)+-

N;(x):Lutlt -2)h - m'xf+ -

21(i

- r)h - mxl+ +

(ih

- m*)+\'

(13)

i:2, ,..,

rrl'

N,+r(ø) : I l** -

(m

-

1)h')*

-(k-

h.(h

¡(r*2t-

- x)

and

I{',(x,y:s,t):(x-,)i(y-,l,*-W(h_2ùo+(k-2t)o+

.ilh): *,tt' - x -

(m

- i +

r)Y1+

.f (*) : *,{tU -

2)(L

- x) -

(wù

- i + 1)vl* -

-2t(j - r)(k -

x)

- (* -

i

l,t

:.t,.

; :,|\r,x) -

(m

- i + l)vl+)' Nln-¡+z(h):ì;lþn-í +\)v - (m-ù(t'- x)7+' i:1' ""

rn'

*7,+r - ( lh ny l:t,

-

x )

THDoREM 1.

If Í =

Bl',f (T,,), th'en

ll*ll .fillr"r, o)ll. äll ¡o'zt(o, )ll * i llt'r'"ll'

uhere

ll-ll is

tke un'iform no/171.

Proof,

In

order

to apply the

medium theorem one studies

the

func-

tions Kri, Ko,

anð.

K'

sign.

Let

us consider

first the function

1(2¡ ;

A.s<1

2

'Ihe

remaind'er

term of the

approximation

formula

generated'

by

the

"p"'äiàì iiöi-;;

be obtained

bv

remma 2'

For a

d'etailed stud'y,

let us

constder m

:2' fn this

case we have I{ro(x,

r;

s)

:

x(h - 2s\

-::::----!- ïOf I <.s

h

-(h-2x)+s for ø>

s

h

It follows that

Kro@,

Y; s) < 0,

(ø,

Y) = Tt

2lh-x-

(h - 2x)

-x-Y) r(i, o)+ B. 4

I

h(h - x)

, zth- x-

(h

-2,)tl!- f(L, Lln?x

-h)+.f

(h,0) * (Rf)(x,

v),

_j- '

-r@ '\z zl

h

-

h)n(lt'

- s)

for ø {

s

o tot x>

s,

such

that l{ro(x, Y; s) ( 0,

(x,

Y) =

Ty

fn an

analogous

way one obtains that

I{or@'

y ; t) <

0' (x,

y) = T¡, t e l0'

k).

It is

easy seen

that the functioî Krt

changes

the

sign

on the

do-

mattn Tn.

where

bY

lemma 2

h

(R/)(ø, ,, :

I

K,o(x, Y;

s)/(2r)(s, O)ds

f

Kor(*,

y i

t)l9'2\(0, t)dt

+

f12)

It Or,,, , y; s,

l)/{1'1)(s, t)dsdt,

(5)

150 P. tsLAGA and cH. COMAñ ()

19 ON SOME BIVARIATE SPLINE OPERATORS 151

In this way

we have

(n/)(",

1t)

:

ftz,0t(|, 0)ç,0@,

y) +

Í(0,2)(0, ùç0,@,

y) I + J!

r<,,{"

, ! )

s, i)/(1,1) (s, t)d,sctt,

Th

'where 1, 1= [0, h,l

and

¿nd

ß2 lt(Sx - h)

Ior

^h

x2-

N,(x):(r:r)(+)'-'('=,,,.)--u*', i= 1,

.

.., m+1,

ìy'r1

having the

expressions

from the

previous case.

We remark

that

S,

in this

case,

is a

spline polynomial operator.

In detail will

be studied

the practical

case ,1fl'

:2.

One obtaines the appr

oximation

forrnula

l@, y) : *þ - x)(k-

x

-2y)+f(0,

0)

+ i4r - x)lh x y -

(1s) -(h - x -2y)+lÍ(o,*)+ )W - x)(x +2y -tù+f(o,

tn)

+

+frx@- x -r)r(+,

0)

* #r¡(i'+)*#¡tr,0) + (R/)(x, !),

2 4 2

g2o@,

1t):

*2 _hx

24

lof '1'<-"h

2

'9or@,

y) :

y(2y lt) _ lt(h - 2x)(x Í 2y - h)

4 4(h_x)

."+and,x!2y)/t,

y(2y

-

h)

4'

otherwise,

where

It

follows

that

'(r4)

max

lgro(x

, l,)l :

t''- ,

t h oL rnax lgo, @,

s,)l:

zs

-

tz ^ftz

,,

- 6a tr<-

1 ,"

l6

(R/) Kro(x,

y;

s)/{2,0)(s, O)ls

f Krr(x, y;

t)fto'2t(O, t)dt

+

T.

flence

I

TI

h

+ Krr(x, y;

s,

t)ÍÍ'r't(s,

t)d,sd't,

,l(R.f)(*, ù <Lflfe,ot1.,

0)ll

+rftlfaø{0,")ll+ lfa,1)ll\\lN,,t*,y;

s, t)ldsd,t.

Th

Takinginto accountthatll{rr(x, y; s, t)l ç 1 on

Tutheproof follows.

2".

The Bernste.in-Lineør case. Using

the

partitions

L:x-o, :frs:0Íh:x1:.. :xnir,

A,r:l,i-1

:tL:0, ti:

t

ih . i:1. ,t-i ti .,.- ti . _

t,

rn_i+1, J ^t ..., t¡u vt unt-¿lt-þw_i-l-2 -tt,

i:1, .,.,

j,r,t,

, A*¡r:

t'{+1

: Q,

tT-F'

:

h,

one

obtains '

l

.,' q,.

--

it- | , h- t; ; ?nhm

lL,:----::.r);:r---_:h,

i -1

,i:1, ..., nt.!1, j:1, .., ffi__i+2

with

K,,(x,];

s)

: (r - r)n -ryltn - zrln - i t, -,).|,

[Io"(x, y I t) : (y - t)+ - i l, -

x)ltr,

- x - y -

(h

- x - 2y)+] I

_t *yj(h _ 2t)+ _+

@

t

2y

_ h)*(h _

ù,

K,,(x, y ; s, t) : (x --s)iþ -

r):+

-T É-')i(å - r)i

+HEoRÞM

2. If f =sl',f çr,,¡,

tken

' ll*/ll < t lfe,o)(.,

0)ll

+ L*llf*r,10, .)ll +T

ll/(1,1)ll

(6)

752 P. BLAGÀ and GH, coMAN 10

Proof. As in the

previous case

the

functions K2o

and

Ko2 are nega-

tive

and

the functiot Kn

changes

the

sign

on Tr.

So we have

(RÍ)(tt, !) :

ero@,

y)Í(''"(8,

0)

*

qor@, ,¡¡ro'zt(o' 'q)

i

I

ON SOMÉ BIVARIÀTE SPLINE OPERATORS 153j

Taking into

account

that

lf lo,,{',

t)ld'sd't

: E

hn

Th

+ \\ *-t*, !; s, t)fl,t\(s,

t)d.sd,t,

Th

we

obtain

i

with

E, rJ

= [0, å],

where

lR(/)l * fr t+tyop)(.,

0)ll

a

s¡¡¡to'a10,

.)ll +

13ll/(',1)lll

In an

analogous way, using

the formula

(15), we obtain

Th

I

f

(x, y)dxd'y

:ftftt1o,

o)

+ 6/(0, f,)+ vro,

h)

+ 4r(+,

o)

*

* u(+'+)* 4r(h, o)f+ Rr),

It

follows

that

m¿xlero@,

v)l :t*,

lsor(x,

v)l:L*, m;;xlKrr(x, y; x, t)l:1

and

the

theorem .is proved.

3. Next, using the approximation formulas

(11)

and

(15)

there

are constructed some cubature formulas

on the triangle

1r.

ff we

integrate on

T,

each member

of the formula (10), one

obtains

\\ ¡t", y)dxdy: li I s/(0,

0)

+ tlf (o,i) + 5/(0,

h)

+ er(+,

o)

*

Tr

+ nr(+ , i) *

4f (h,

o)l+ Rff),

where

lR(/)l * ffn

talr,,,o).(.,

0)ll a

ol¡¡to'a10,

.ll+

lì./(',')lll.

REFERENCÞS

whe¡e

R(/) :

CzoÍ(z,ot(t,, 0)

¡

cor¡rz,o)(0,

tl) +

with

I I t,,{',

/)/{1'1)(s, t)dsd't,, T,n

[1] A r a rn ä, O., the þroþerties of monolon'icity of the sequence oJ interþ-olation þolyno-

nials of S. N. Bernsteòn øød, their øþþl'ical'ion to the-_stud'y of aþþtoximatiotr' of funcíions (Russian). Mathematica (Cluj) 2(25), 1'.25-40 ltOe!)'

[2] Com^o,-Gh.andFrenf iu,M., Biuøriøle sþline aþþroxirnation. $tud1a univ.,,Babeç- Bolyai", Ser. Math.,59-64 (1974).

t3l G o r cl o n, W. ¡., D.istributiae lattices and, I'he øþþroñmalion oJ multiaariøle,funotions.'

fn ,,Apiroximation with ,special emphasis on spline functions" (ed. ! c h o e n-

b e r g, -f.

J.). Academic Þress, Nerv York-I,ouilon, 1969, 223-277'

[a] M a r s cl e n, lU. f., 'An àdentily Jor sþt'ine funol'ions uith øþþlicalòons lo uariation ili- minishin{ sþline aþþroiimøtion. J. Approx. 7--49 (l?70)'

l5l - On uni'form sõliie øþþrôximalion. J. Approx. l'he :?5.3 (1972)'

¡?j u.tsdeî, v. i. ana-Schoenberg, l. -¡., Ott' yg, 'inishing sþline methods'

Mathematica (Cluj), S(31), / 61-82, (1966).

[7] popovic í:u,, 1., Sur'le r:este d.ani certain.s formules li.néøires d"øþroúmation del"analyse. - - Mathematica (Cluj), l(24r, 95-142 (1959).

[8] S a r d, À,, Lineør aþþiòximation. Math. S-urveys No. 9, American Mathematical Society,- P¡ovidence, Rhocle Island, 1963.

[9] Schoenberg, I. 1., ou. sþIine fuflclions. In "Inequalities" (eil. shisha, o.). Âca-

clemic Press, New York, 1967, 255-291.

[10] Starcu, n. o., ln" remaittd.ei ceirain li.near aþþroximation.formulas in tuä uaria- ål¿s. SIAM J. Numer. Anal. Ser' ß,'l', 137-163 (1964)'

l1ll - Eua.luation of ilíe remainder lerm in aþþroximation form.ulas by Bcrnstein þolyno- miøls. MatL.. Comput., 17' 270-278 (1963)'

fnl - A method, Jor obtøininþ þoþtnomiat of Bernste'in tyþe of tøo uariables' Amer. Ivlath.

Monthly, 70, 260-264 (1963).

l-131 - Aþþroximation of biuøriate Junclion.s by m.eans oJ some,Bernslein-lyþe oþeratovs. I*

,,Multivariatê Approximation" (ed. 1Iandscomb, D. G.). Acaclemic Press,.

Lonclon-New Yãk-San Franscisco, 1978, 189-208'

Receivetl 7, Il, 1979.

Czo: \\ v,,l*,

1t)dxdY

: -

L*'n,

T*

Coz: ll t.,(r,

v)d'xd'v

: - *nrr,

Tl s,,(s, r)

:

I I

r<,,t", y ; s,t)d.xd.y

: T - T t, -

2s)oa(h

- 2r)\.

Tb

Referințe

DOCUMENTE SIMILARE

Bernstein operators, Bernstein-Schurer operators, bivariate opera- tors, Korovkin-type theorem, bivariate modulus of smoothness.. Some special properties of the polynomials (2)

[4] Delvos J, Schempp W., Boolean Methods in Interpolation and Approximation, Long- man Scientific &amp; Technical, 1989. [5] Schurer F., Linear positive operators in

and Vernescu, A., Approximation of bivariate functions by means of a class of operators of Tiberiu Popoviciu type, Mathematical Reports, Bucure¸sti, (1)

In an important paper published in 1966 by the first author [10] was introduced and investigated a very general interpolation formula for univariate functions, which includes,

So, wide classes of stochastic orderings, univariate or bivariate, discrete or continuous, of (increasing) convex type have been introduced in order to compare random

In the present note we study the degree of simultaneous approxi- mation by certain Birkhoff spline interpolation operators.. Special emphasis is on estimates in terms of higher

We solve a problem, raised by Paolo Soardi, concerning the shape preserv- ing properties of the Bernstein operators of second kind.. \\¡e establish also a

Devore, The Approximation of Continuous Functions by Positive Linear operators, Lecture Notes in Mathematics, 293, Springer Yerlag,7972'. Starrcu, Approxintation of