• Nu S-Au Găsit Rezultate

View of On some properties of Stancu operator

N/A
N/A
Protected

Academic year: 2022

Share "View of On some properties of Stancu operator"

Copied!
5
0
0

Text complet

(1)

REWE Ð'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome XXVIÍ, No

l,

199g, pp. 99_106

ON SOME PROPERTIES OF STANCU OPERATOR

ZOLTÁN FINTA

I.INTRODUCTION The positive linear polynomial operator defined by

(l) P:

(.f

,")= É f ftln)wn,t(x,a), neN, xe

[0,1],

a>0,

k=0

where/is a real function on [0,

l]

and

k-l n-k-l

w,,t(x,*)=f,1 \k) (l+cr) ,'! t'..*' (t+2o")...(t+ ,--4 lt ,"-'^' (n_t)a)'

was introduced by stancu [6], who studied, among other properties, the conver- gence

of

Pf

f tofas n-)

@ and 0 <

s

= c¿(z) _+ 0.

In the case cx, =

0,

pro is the Bemstein operator

B,

given by

(2) B,(î ,')

=

É r&

t

n)(:).r (r- *),-o

,

where

f eCl\,ll.

Lorentz

[4,p.|}2]proved

rhat for

f eCl},ll:

(3)

lB,(-f

,x)--f(x)l=M,'0

n

^*)

ifandonty

if a2çf ,h)=o(hr).

Here 2

(f

,

t)

is the classical modulus of smoothness defined by

(4)

úJ'

(f

,r) =

o:ï!,

lllr'r.f @)llrp,,t , where

nr.f (*) -{r rr

+

h)-2f

(x)+

f

(x -

h), if

x+ h

e[o,r];

¡. 0,

otherwise.

AMS Subject Classification: 41436.

(2)

100 Zoltán Finta

In

this paper, we pfovide further approximation properties

for P,". Let

rp denote

the following function:

q(.¡;)=

{rO-ù,xe[0,1]' For a

function

ge c[0,1] we

denote

the

uniform norfn

on a

subinterval

[a,blc[o,\]

by

llgll,,t",ol = sup { lg(¡) l: x efa, b)]'

2. MAIN RESULTS

3. LEMMAS

For proving Theorem

I

we need the following lemmas:

Lsvnr,le

|

(the localization theorem).

If f ec[0,1]

vanishes

on a

sub-

interval

la,blç10,1)

and

a(n)=o(n't),

then

(7)

P:

(f,x)= o(n-t),

x

e(a,b)'

Proof'

suppose that

f

has second derivative

f ,,(x) for

some x

e[0,l]

Then, by lheorem 7.1 [6,

p. ll92]

and a(n) = o(n_t), we have

(B)

]Y*"tP;

(-f , x)

-

.f (x)1 =

{l jr"f - 't

"(x),

From Lemma 5.2

[1,p.

ßa]we ger (7), Lnn¿¡¿e 2.

If f

e C[0,

l],

u(n) =

o(n-t)

and

tï* {r[p,"

(.f , x)

- f (x)]]

>

0,

x e(a,å)

c

[0,

l],

The theorems in question can be stated as follows:

Tneonpu

I'

Let u(n) = o(n-t ),

a(n)'

n 3 r,

for

n =

l'2' "'

and

f

e

c[0'

1]'

Then

for

each M > 0,

(s)

lP:

(f ,x)-,f(x)l< ,ÉP,x

e

[0, rf, n=t,2'.'.

holds exactly when a2

,h) < lvIh2 , h> 0'

Trmon¡v

2. Let O<o(n)

-+0 (n->ø)

and

.f .40,1)

with oz("f 'h)<l'¡hþ,

h>0,and0<P<2,Then

lp.

(f ,x)-,r(x)l

=

r(Él-)u'' ,

x e

[0,1], n=1,2,'..

T¡ggREM 3.

Let

cr =cr(n) = O(n-1 ), o?., =

(l+nu)l(n(l+o)), n=1,2,,,.

and

f

e C[0,

ll.

Then there exists M > 0 such that

(6)

llP:

f - f

llrro,r¡l M'arfl

(f ,a,)r¡o,,¡,

where cll{.f

,/)cro,rt

=otïp=,llI'rr<,tÍ(*)ll.¡0,'¡

to the Ditzian-Totik modulus

of

smoothness

l3f.

Tireonnu 4, Lei u=u(n) =o(nt), and 0<þ<2' i¡ f eCi1,il

anci

ai U, h)

cp.tt = o(hþ

),

then ll P:

f -,f

ll"ro,, r =

o(n-þ''

)'

In order to prove theorems, we need some lemmas

first'

i

2 3

On Some Properties

10r

thenf is convex on[0,11.

Proof'

suppose that

f is

not convex._Then, using the parabora technique

[1,p.

124], there exist xo

e(a,ó),ô>0

and

e@)="ri +d**r,".0

such that

"f(xò=e(xo)

and

f(xo+t)<eeo+/) for allt,

ltl<ô. wecanexrend ftoa

fturction x e

[0,l]. F eC[0,1)

By Lemma 4.1.16,p,

so that F(x)=f ilg4l (x),

x e [xo _ô,xo

+ð], F(x)<ee),

(e)

so we obtain

pno

(u', r)

=

*

Prt

(r,

x) = x

fx(l-x) I

L , +x{x+c)j

Pn" (1, x) = 1,

and

n[Pf

(F,

x)

-

F(xo)]t

n[p," (e, xo) _

eeù]

But Lemma

I

shows that

=c.xo(t-,ïo)

11'?g<0

n[p,"

U, x)

_ -f

(xù]

< c. xo(l _ xo

).

t,* no +

o(l),

which contradicts the assumption

(9),

I + ct

In order to prove Theorem

2le

need some other lemmas:

Lewre

3. For

.f

eCIO,1] we have llp,ï

f

llrto,,l s l]./ll.ro,,i .

Proof. Since

.i wn,t(x,u)

=

I

[6, p. l lg4], we have

k =0

I P," (.f

,")

I

=

å

w n. t ( x, a) I "f Ø t n) I <

ll.f

llqo,,t .

(3)

5 On Solne Properties

103

v/here G(v) = (p 2 (y)

f

,,

(v).

By Lemma 5 we obrain

(16) llpi Gr(f

,.,x),x)llc¡et,.t_Atnt<

,r(F#,ìll.,^,.,.^,,

llM(G,x)llcro, rl

and (17) Since

we have (18)

ll M (G,x) llcro,,t slle'

Í,,

llrrc,,t.

P," ((u

- ,)' .g-, e),

x)

= n(l+o)'

1: no

ll

p:

( R, (

f

,.,

x),

xllc¡ e r u. t _,r r,1 s

ffi ,r, f

,, llr¡0,

t:,

using (16) and (17). By Taylor's formula:

u

I

@) =

f

(x) +

î,(x) (u_,) +

J @_ v)

f

,,(v) dv.

Then

P,ï

(f

(.), x) =

f

(x) +

f

,(x)

p:

((. _ x), x) + p," (Rr(-f ,., x), x).

Hence, by (18), we obtain (15).

4. PROOFS

ProofofTheorem

I.If

lP:

U,x)-.f(x)l< M.'P'..(*),

x e[0,

t], n=r,2,3,.,.

n

is satisfìed, rye pur g(u) =

f

(u) + M

tf

/

2

and obtain

' n[P,"(g,'x)-g(x)lr r'x(l-x)

(n

-l)htn

2 l+a

Then, by Lemma 2, g is convex on [0,

l]

and, therefore, g(x + h) _2g(x) + g(x _ h)>0.

Hence

f (x+h)-2f (x)+/(x-h)>-Mh2.

Analogously,for

g(u)=_f (u)+

Mu212

Zoltan Finta 4

102

(14) So

llP:

f

ll.¡0,,1 < ll"/ ll.ro;'r'

Lnwa

4.

For

some constant

C>0 andall f aCl},ll'

(10) lP: (f ,x)- lQ)l<Ca'(f ,qç¡tJi),

x e[0,1]'

Proof.LeT.

f

eC2¡0,1.1. By Taylor's formula:

(1,) t(+)

=

t G).(+- ò,' ur.(:- ò'lir

"

u,. r(+-i]'

where

s0)

=

s,o)-) 0

as y

)

0.This shows that ths last term in

(l l)

does not

exceed ll,f " ll.ro,

¡(k

I n

-

Ð2 12. Then

(r2) llp. Í-

lll"¡0,,1<ll./"ll.ro,,r

4*

#, ¡

ec2¡0,t1.

Using Lemma 3, we obtain the boundedness of the operator

Pf

and, by (12) and

Theorem 5.3 12,p. 2181, we obtain (10)'

Remark.

For

c¿=0 the inequality (10) reduces to the known inequality

of

Popoviciu [5] conesponding to the Bernstein polynomial (2):

(13) lB,(f ,x)- f (x)l<Ca'(f ,q(r) l^ñ),

x e [0,1]' Theorem 4 requires the following lemmas

LEÀ/ß44 5.

For

Rr(f ,u, x)

= ! f"-v)

,f " (v) dv we have

,T

lu-

xl

lRr(f

,u,

x)l< +

Q- (x) 92(v) |

f "(v)ldv

J

for

x, zr e [0, 1].

Proof. Lemma 5 is a particular case of Lemma

9'6'I

13, p. 1aOl'

LEMMA 6.

For

A >

0

a fixed number and

f

a dffirentiable function on 10,

l)

with

f '

locally absolutely continuous in f0,

ll

we have

(ls)

llP.

l -îllrrn,,.,-n,,t ffi

ff

s'"f

"11"10.,7'

Proof. We consider the maximal function of Hardy-Littlewood

M(G,x)=supl lr'l t'

IC1u;Arl,

u lx-u "

I

(4)

(20)

llo's','llr¡o.t¡ 32n

Kz,eç

,n-1)cto.tt.

By Kz,r(f

't')cro.¡1 we denote the K-ñrnctionar of the pair of spaces

c[0,1]

and

a coresponding weighted Sobolev space with weight frrnction g2 given by

Kr.r(-f

,t2)qo,,r =ir"tr

{llf

-gllc¡0,r1

+tt llq,

g,,llc1o,r1

ig,e

A.c.,o"}, where

g'

e A.C.,o" means that g is differentiabl

e

and

g,

is absolutely continuous m every

Í

= "f

- g,

closed

*g,,

intervar we estimate

[a,b]c-[',1].

using Lemma 3 and Lemma 6 and writing

(21)

and

llP:

(l - s,) - (Í-&

)llc¡0, tt< C ll.f

-

B,llc¡o,ry

(22)

llp,i

s, - Inllc¡an,t_,u,.1s#ft.ller8,,ll.¡0.,;

.

By Theorem 7.2.1 and, Theorem 7.3.1 [3,

p.79

and,p, g4, respectively], \,].e can choose

g' to be

{",

the

u*st tJãi-¡å

degree

ór;";;

approximario' in C[0,1]. We have

(23) ilPi Prt;t-

PtJ;tlic¡',1¡ s

Mltpi \.t;t-

prJ;tllr¡n,,,,_n,n1,

using Theorem g.4.g [3,

p.

10g] translatcd from [_1,

l]

to [0, 1] and

n to [\Ç].

But, in view of Theorem2.l.l [3, p. I 1], there

exists

M>

'such

(24) M-'rtr(.f ,o-,,r)"to,,l I Kr,r(f ,n,l)cro,rt<

Ma2r(-f ,n,,,r).,r0,,r.that

Then. by (23), (24)^ (.22¡ vn¿120). we obtain

(2s) llP"

Pr^t,t- PrJ;tLlc¡0,,11

" ñft'2n.Kr.*(f ,r-')"ro,,r r

<

M' 'ff '

'l{'f 'n-"')

',.,,t'

On the other hand, by (21),( l9) and (24), we have

(26)

llp: (f - \r;t)-U -{ø¡)ll.¡0.,1<

<2CK,.e(f

,

n-')rto,,l s

M,, .

rrrÇ,r_"r).t0,,1.

7 On Some Properties

t05 and

104 Zoltrán Finta

we have f (x+h)-ZlG)+ Í(x-h)<

Mh2

, so l\'ol(Ðl< Mhz.

Therefore

a'(.f

,h) < lrlht

,

h> o.

Conversely,

let f

eC[g,

1] with o'

(-f , h) < lrlh'

.

h>

0'

Then

f

belongs

to the Lipschitz space

Lip(2,C[0,1]),

which implies,

in view,of

Theorem 9'3 12,p.53f, that there exists

/'

on [0, 1.1 and

/' is

absolutely continuous with

lf "(x)l< M

a.e. .r e[0,1].

Let

x e[0, 1] be a fixed point. For the linear function

l(y)

=

f

(x) +

f

'

(x)'

'

(, - y),

by Taylor's formula, we have l-f

0) - t(y)l<

M (y

-

x¡2 I

2'

Since P,"

preserues linear frurctions, we obtain

lP: (f,x)- f(x)l=lP: (Í -t,x)l<

Y

p,: ((.

- x)z;x)= M. t(l_-t)

+!Y

<-2 2n

1+ G

By the hypothesis

n'a(n) (

1, for

n=!,7,...

we obtain

lP: (f,x)- f(x)l< M q2(x), xe[o,i],

n

Proof

of

Theorem 2. Lemma 4 and ol2

(f,h)<

Mhþ

' 0<P<2,

imply the

inequality

lP: (f

, x)

- I Q)l<

M

(ç'

(x) I n)þtz ' Proof of Theorem 3 . We have

Pf(l,x¡=1, Pi@,x)=x

and

[_ . I lxfl_x)+r("+o)-].

(u"

,x)

=

I

r.ü

L---.,, j

Then

Pi

(@

-

x)2

,x)

=

x(l - Ð

'

+:+=

n(t +

ü)

q2 1x¡ 'crl '

fot

n=1,2,...So,

our statement is a direct consequence of Theorem 1 [7' p. 165]' Proof of

fneorei

+. We can choose

g, eCf0,1]

such that <p2 g'n'e C[0,

l]

and g', is locally absolutely continuous in [0,

l],

which satisfies

(19)

ll"f

-B,llcr.l,'l <2Kz,q(f ,r-t)rro.,t

6

n =

lr2,

(5)

MEAN- VALUE FOR'MULAE FOR INTEGRALS INVOLVING

GENERALIZED ORTHOGONAL POLYNOMIALS

REVUE D'ANALYSE NUMERIQUE ET DE THÉORIE DE L'APPROXIMATION Tome XXVII, No 1,199g, pp. f07_ll5

LATIRA GORI, D. D. STANCU

l. It

is known that

if

we have a se

associated with a nonnegative measure

d

ul polynomiaß

(p,), if

we consider a f,inctio

n -f el,,,(o,,

tlrn

'jlti:JffT

value formula, of N, Cioranescu

p],

for

(1) [

b

tra p,G)da(_r)

=

f

(')

(E)

I ", p,(x) do(x),

a <E <b.

.

In this paper we-give several

.*t.nriolr.

of.it to some crasses

of nonclassical orthogonal polynomiars, incruding

th;;;;r-"rrhogonal

porynoiiur, correspond_

ing to a measure of the form oldä,

*rrir.

given real

rrtt¡t. ,"ro*,

ls a nonnegative polynomial having

, t'

is remarkable the speciar case of s-orthogonal polynomials

p^,",

foïwhich

I ,Ì::'

(x) da(.r) =

ñh,

when we obtain the exrension

Ø [

b

p];i' u)dcr(x)

=

f (2G)

I

*^ o:,,,-,1.r¡ dcrlx¡,

n"r"il||,1lces to

formula

(1)

when s =

0

(the case

of

ordinary ofihogonar

2'

we

start from-

a

"method

of

parameters,,. (see [20])

for

constructing a

ffiii,r"J,:ï:T:i:rrer

quadratu'"

roilîu

uy u,i,,g

,nu;tî oî.u,,,*ed

nodes

n., o,Ll;.jffj};l;llå:

innnitery many poinrs or increase and

rhat

da(x)

AMS Subjecr Classification; ZStZ+, SZCZS, 4]ASS,65D32.

Consequently, from (25) and (26),we obtain

llP,ï

f -./ llcro,,,t(*, # * r,,). r'*{r, r-''' ),p.,t.

tJsingthehypotheses

a=o(n-t) and of (f

,'n-''')cto,rì =

O(hþ)' 0<B< 2'

we obtain llP:

f - f

llrw,tt= O(n-þt2 ). Thus the theolem i5 proved completely'

REFERENCES

l. R. A. Devore, The Approximation of Continuous Functions by Positive Linear operators, Lecture Notes in Mathematics, 293, Springer Yerlag,7972'

2. R. A. DeVore and G. G. Lorentz, Constructive Approxímation, Springer Verlag, Berlin-Heidel- berg-New York-London, 1 993'

3, Z. Ditziw.tand V. Totik, Moduli of Smoothenes.s, Springer Verlag, Berlin-Heidelberg-New York- London, 1987.

4, G. G. Loreutz, Approximation of Functíons, Athena Series' Holt' Rinehart and Winston' New York' 1966'

'^-)-'nti¡ø ztoo rnn¡tinns rn lathematicacluj"l0 5.T.Popovicìu,Srtl'approximaliondesfonclionsconvexesd'ordresuptirieur'lt

(1935), 49- s4.

6.D. D. Starrcu, Approxintation of functions by a netv class of linear polynomíal operators,Rev' Routnaine Math. Pures Appl. XIII, 8 (1968), 1173-1194'

7. V. Totik, LIníþrn approximation by posítive oPerotofs on infnile intervals' Aural' Math' 10 (1984), 163-182.

Received May 10, 1997 Depaitmenl of Mathematics

" Bab eS-Bolyai " Universi IY

3400 Cluj-Napoca Rl\mania

Zoltán Finta 8

106

Referințe

DOCUMENTE SIMILARE

Sendov and Popov obtained in [8] that, roughly speaking, if a sequence of linear positive operators that preserve con- vexity of higher orders has the property of the

, Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Proc. and Occorsio, M.R., On approximation

singular integrals of Picard type which approximate the continuous functions defined on compact intervals... Th, Anghelulá, une remarque sur I'integrale de poisson,

Timan, Srrengthening of Jacl&lt;son's theorem on best approximation of continuous funclions given on a fnite interval of the real a-xrs (in Russian), Dokl.

Stancu, Approximaiion properties ttJ'a class of linear positive oper\tors, Studia Univ' Babeç-Bolyai, Cluj, Ser. D, Stancu, on the remainder of approximation of

Stancu, Approximaiion properties ttJ'a class of linear positive oper\tors, Studia Univ' Babeç-Bolyai, Cluj, Ser. D, Stancu, on the remainder of approximation of

Zhou, Best direct and converse results by l^agrange-type operotors, accepted for publication in Approximation Theory and Its

Devore, The Approximation of Continuous Functions by Positive Linear operators, Lecture Notes in Mathematics, 293, Springer Yerlag,7972'.. Starrcu, Approxintation of