View of On the classification of dynamical systems

Download (0)

Full text

(1)

MATI{EMAîICA

-

REVUE D'ANAI{YSE NUMÉRIQUE ÞT DE TIIÉORIE DE IT'APPROXIMATION

L'ANALYSE

NUMERIOUE

ET LA THÉORIE DB

L'APPROXIMATION Tome

B,

No

2'

1979,

PP.99-109

oNTHECLASSIFICATIONoFDYNAMICALSYSTEMS

by

GH. TOADER (Cluj-Napoca)

1.

Infioduction

The set of

dYnamical sYstems

problem" is

unsolvable. How-

åittg so-" Partial

answels' So ontäins

a

nãcessary and' suffi-

In thjs

papef we pfopose á.methocl

similar to

l:hat

of

Vrublevskaya

but

basecl dn

-a

simpler

definition

the

Pompeiu-Hausdorff

metric in

th'

similar

dne

in the

case

of the

GH'

clefined

for the set of

continuous

in

[11]

and

have used

then in a

Pr

i

i

¡

(2)

100 GII, TOADËR

2. Basic notations and delinitions

I-,et

X be a metric

space

with a fixed metric d,:

d,*.

Êor

a.

e X,

r>0 and A (X we

denote

by:

(1)

d'(ø,

A) : ial

{d,(a, x)

; x e A}

the

distance

from ø to A

and

by:

(2) V(ø,r) : {x e X;

d,(a,

x) < r}

the ball of radius r and center a. For a

function

f

:

X* Y and a

set

AUX we

denote:

(3) Í(A) : {Í(x);

tc

e A}.

Def inition

1.

A

d,ynømicø|, system on

X'i,s a

continuous funct'ion

n: X X R- X that

søti,sfi,es the fol'l'owing øxioms :

(Ð n(x,0) : x, foÍ every x in X;

(ä)

æ(rc(x,l),s)

:

æ(x,t

I s), for x in X,

ú

and

s

in

R.

Def inition 2. For eny x e X

one d'efines:

a) tke

mot'ion

(through x) n,: R-* X by:

f4) n,(t) :

æ(x,t);

b) the

trajectory

of x by:

(5)

[email protected])

: {æ(x,t); I e

R} i

c)

the þositiue

l,imit

set

of x

by :

(6) L*(x) : {y = X;

Jtn ---+

| æ,

n(x,t,)----y}.

Def inition 3. A þoint x e X

(and

its trajectory) is

søi'd'

to

be:

a)

cri'ticøl',

iÍ y(*) : {x};

b)

þeriod,ic

if

tkere

is ø þ10,

such that æ(x,

t + þ) :

rc(r,t)

for

øll

teR; c) L

støbl,e,

[email protected])

i's rel'atiael'y comþact;

d) þ

Poisson støble,

i'f x e L+(x);

e)

e-støbl,e (in

the

sense of M.

BEr

or{rNo

lll) if øny

e-ne'ighbourhood'

[email protected])

contø'í,ns

at

leøst

ø

trajectory d'i'stinct

[email protected]).

Def inition 4. Let n

ønd,

o

be d'ynamical' systems on

X

oel,y

on Y. Tkey

øre NS-'ísomorþkic (respectively GH-isomorphic) ex,ists

ø

homeomorþhdsm

h: X----Y,

uhích' þreserues trajectories,

(7)

y(h(x))

: [email protected]\, for all n e X

resþect'i-

if

there

tkøt is :

3 CLASSIFICATIoN oF DYNAMICAL SYSTEMS 101

(respectively

which

makes commutative

the following

diagram:

X x R

n

-X

(B)

lz

* r. I,

v i n -'--Y

that is:

(B') k(n(x,t)): "(h(x),/), for

a71

x e X and

' e

R)'

In what follows we shall use the set

1

:

[0,

1]

and

the

function

).:[0, æ]*.I

defined bY:

I' Îorte

[0,oo)

(e) r(t) :{t+,

I I forl:co

on the set of non-empty

subsets

of x

we

shall

use

the

premetric

p oi Þoãpeiu-Hausclorff

[-61- definea

for anv M, N C X bv:

(10)

P(M, N) : I(sup {sup {d(ø,N) ; x e M\,

sup

{d'(y,M); y = N}})' I,et c(R,X) be the set of all

continuous functions

from R to X.

We

need sòverál metrices

for

C(R,

X)

:

a) the uniform metric T,

defined bY:

(11) T(f,e): I

(sup

{d(Í(t),s(t));t = R}), for

anv

Í' g = C(R' x)

;

b)themetricK,whichgeneratesthecompact-opentopology,

defined

by:

K(Í, Ð :i r-"

r(max {d(f Ø,e(¿))

;

l¿l

< n\);

the metric S, of

Pompeiu

- Hausdorff type, which we

defined

I bv:

s(l

g)

:

tr(sup

{so(l s),

so(g, "f)})'

2

(r2)

in tl

c (13)

) 1

where

(13') S,(l

g)

:inf {r > 0;Vr e R, inf {d(f(t),

e(s))

;

l¿

-

sl

{ r\ <r}'

with the usual

convention

: inf

Ø

:

æ '

ft is

easy

to

check

that for any.f,g = C(R,X):

(14) K(f, e) < ?Lt e) and s(/,

s)

< T(l

e)

(3)

702 GH, ToADER

and, as we proved in [11], the identity

function :

i

: (C(R, X),

S)*

(C(R, X), K)

is

continuous.

If it is

necessary,

we indicate by a

lower

index the

space used

in the definition of a certain metric (for

exemple

P¡).

L

e m

ma 2, If f : X---,Y is a uniform

continuous

function uith

the

þroþerty that

f(M)"e"w Íor any M e

(J then the ind,uced, functioø

f :u- -W is

continuous.

Proof

. we

proceed

by

contradiction.

Le!

ug.supp-ggg.

that there

exists

u cottvetg"nt

sé^quence

M**M

such

lhat.f(M") *Í(A), that is

one can

find a r )

O sucñ

that

for-any no

thete

exists

n)

tto

for what P"(Í(M")' Í(M))> r. There are two

possibilities:

a) sup {d"(f

(*),

f(MD; x e M"o)> r;

b) sq {d'(f(M"u), fU))', ! e M}2r,

for

some

frh*æ. In the first

case,

for any å

one can

find a

xnhe M'rh such

that:

(15)

dt([email protected]"*),

Í(x)) > ,, for

anY

e M.

But

/being

uniformly continuous there exists

a

s

> 0,

such

lhal

d,v(x,y)

1 ( s'impliãs d't(f(x),Í(Y)) <r,

and

with the property that for

h

)

hu,

exists

lo = M

wít]¡ d'v(x,*, Yo)

<

s, he

dicts

(15).

fn the

case

b) one fall the simple continuity of /.

Consequence 1. Let X

ønd'

Y

be comþact

mlllt-sþaces,-V o!

W famities

oi.subsets

of X

resþectiael,y

Y. IÍ Í(M) =

W

for

ønynM

e

U

a.nd,

Í-1(N) = IJ for any N e W,

then

the

ind,uced' function

f : U"-W

is

a

homeomorphism.

I,et us äpply

these

results to

dynamical systems-

For a

dynamical system

tr ott if

we denote

by læ the family of all

trajectories.

Ifow

one

kîows [A],

1.æ

is a partition of X

and we consider

on it,

as before,

the premetric P of

Pompeiu

-

Hausdorff and

the

corresponding equiva- lencË

relation which

we-

name in this

case 1-equivalence. One obtains

the quotient

space

îr, und the

following:

TIrEOREM

L If

tke d,ynami,cal systems ¡c ønd, a d,efined,-on tke comþøct

rnetric sþacets X^rbsþectiael,y

Y

are-NS-isomorþkic, tken the corresþond'ing quoti,ent sþaces

ønd,

lo

øre homeomorþhic.

Rernarh

2. This condition is not sufficient for

Ns-isomorphism how shows

the

following:

ExemþIe

l. Let X:Y : {(x,i) e Rzi x'*y1.5-3}

?s- subspaces

of R2. The dynamical systems defiàed.-by autonomous

differential

equations

(in polar

coordinates) :

ä:p(p-1)(p-s);

g:1.

4 5 CL,A.SSIFICATION OF DYNAMICAL SYSTEMS 103

3.

Conditions

lor

NS

-

isomorphism

I.et X and Y be two metric

spaces, and, æ

and o two

dynamical systems

on X

respectively

on Y. For theirs

NS-isomorphism

the

two

families of trajectories (of

æ

and of o) must

correspond. each

to

other

by o

homeomorphisrn

k: X-"Y. But the families

being

infinite, it

is

dilficult to check this

correSpondence.

Thus it is natural to look for criterions

which contains simpler conditions,

at least

necessary,

for

equi- valence.

We begin with

some

lrrore

general considerations.

On

any family of

subsets

of X we

consider

the

premetric

P

defined

by

(10).

I.et U be

such

a

family.

Def inition 5.

We say

that tuo

sets

M,N C{ are

U-equivalent

(and

denote

by M - N (rel UD i"f

there exists

a

continuous

function h:

I* U

such

thøt

h(0)

: M

ønd,

h(l) : ¡¡.

Remørh, 1.

It is

easy

to verify that

U-equivalence

is an

equivalence

relation,

hence

it

induces

a partition of U. We

denote

the

equivalence class

of M by û ^na the quotient

space

bv

Û.

I,emma

1.

If U

ønd,

W

are

fømilies of

subsets

of X

resþectiael,y

Y, tken øny

continuous funct'i,on

F: UnW

d'efines

a

continwous function

^^^^¡A

F:UnW by F(M):F(M).

Proof.

It is

obvious

that M - N (rel U)

implies

F(M) -

F(.N)(rel

W) so

Llnat

F is well

defined. Using

the

continuous canonical projections

i:U-U and j:W*W we obtain the following

diagram:

(JF-W

l¿

I ^ l'

Ù ' -û,

F'rom

his commutativity

results

the continuity of Ê b"""or"

7 o

F is

con-

tinuous

(see t5l).

(")

(4)

r04 and

(")

p:

GH, TOADER

*: x(x - l)

!:0

6

CLASSIFICATION OF DYNAMICAL SYSTEMS 105

I

Then the

l,agrange

with the

trajectorY

that is the

theorem

LemmaS'Iftkecløssof.y-equiuølenceoføcriticøl'þoi'ntxisnot a

singleton, them

x is

e-støbl'e'

The condition is not sufficient as

shows

the

following:

Exemþle

3. In the dynamical

system generated

by the

differential

system (iå Polar

coordinates)

p

sinl ,

f.or p

*0i

P

0 , for P:Q' 0:1;

the origin is an

e-stable

critical point

whose class

of

y-equivalence rs a singleton.

4.

Conilitions

for

GH

-

isomorphism

1

because

the GII-

irs

NS-isomorPhism

[13]). But

we look For a dynamical system 7r on

X,leL us

consider

the

space

of

motions :

fI:{zcn; xeX)

and the

maP

æ*:X* [I

defined bY:

(16)

æ*(x)

:

nn

The

use

of the metric T f.or fI

Pro

two motions on the

same trajecto

the following:

Exemþle

4. Let

æ

be a

dynamical system

on R definedby n(x't):

:

rc

' exp (t).

1L

x* Y we

have:

T(æ',

nv):

tr(sup

{lr - yl exp (t); t e R}) :

1'

stable

traiectory {(x,l); 0 < x < 1} is

'¡-equivaleut

{(x.O\'. d < x < i} wtrich is not

l,agrange staole'

là-

;å¿ true if

one renollnces

at

completness' t

p(l-p) if0<p(1;

0 if 1 < p ( 2;

(p-2)(p-3) íf 2<p<3;

0:1

afe not Ns-isomorphic although the quotient spaces l1rc

and Ilo

are homeo- morphic.

As

concerns

the

equivalence classes, we have

the

following:

the systenr,

ed,

on a

comþIet,loc.øl'Iy

X,

ais

of

ce

of

ø Løgrønge støbl'e

nly

stable

Proof.

Let

To

be

aÍ"agtange stable,trajectory, 11

:

Y0. and

h: I*læ

continuoús

and,'ðuch thaí nP\ :

"¡o,

h(l): Yr:

D-eno-te

lv I : {t-=*!

|

nftf i,

Lagrange stable).

of

còúrse 6".=

i,'thai is ¡+Ø' Let

to

e J' T¡.

space

X being locally

compact

and ffi

c:gmpact, k,(to) has

a

compact

"ãi*rr¡å"tr'àãål ur"l

7 ir

ãpen

in /. Èdî /

is-also closed

in 1.

rndeed,

ii;,;";;pp;."'tir" "onúrty,'thcle exists a

sequence (1,)

in / which

has

a limit point

to

ê J.

That

sequence

(ø,) which has

no

hai'e also k(t,)-

71¡0]r

(!n th

the set of

subsets

of X). If

bers,

then for

everY

þ,

thete

is a

n

implies P(k(t^),h(to))

<!'t'.tm1)Ntanð'yl, =îñsuchthat

d(y"'

x,) <

< 3 for afly n.

Because

TAÃ is

compact, there

is a

subsequence (yl,o)

of (yt-) which is

convergent.

We may

assume

that a0'"0,

y|r)

< 3

for any

h

anð.

l.

Denoting

x,o tty

x'0,

t'. obtain the

subsequence

(øl) oÍ

(x*) such

that

d,(xte,

x!) (

e,

for

any

h

and

l'.

Step

by

step,

for þ :2, 3,

' ' '

we obtain the

sequence @!,)

such that d(x!, xt) (

for

any

h

anð' l,

(x!"\ being

subsequence

of lxl-'). So çxi) is a

Cauchy. sequence. and,

Ï"f"itrg--Ëo-piãi=it is "

convärgãnt subiequ_"ttc".

of (1,) in

contradiction

*itrr--iË" urän*þtiou- Att"t uil, J : I, ^that is

^¡f

is

l,agrange stable.

ExemþIe

2. Let X :

R2

- {(0,0)} with the usual Euclidean

metric and. rc

thå

dynamical system gèierated

by the differential

system:

p:

t

(5)

106 GH. TOADER B

I

CLASSIFICATION OF DYNAMICAL SYSTEMS 107

*xo

such

that is no motion

is. equivalent

with

another

(taking the metric T

for

the

space

of

motions), -

ln what follows we shall

use

avoid

these

difficulties. With this

c

D

ef initio n

G. We say that

Ient (and nII,

suclr denote

thøt

h(0)

by : ¡- - n,,\'if

the

".

;;Nd"h(l)

As

above

we

denote

the

class

of

Il-equivalence

of

nn

by i

and the

quotient

space

II/_by û.

L

e m

tna 4. If

y(x)

: y(y), then

nn

-

ær.

_ ?o-tf.By the

hypothesis

!:n(x, s) with

some

s e R. Definig å:

/*II by

h(t)

:

æn1*,¿"¡

it is

continuous because

s(h(tr),

h(tr))

< lr, _ t,l .

lsl

and Remark k(0)

:-rr, 2.

Thus

þ(l) : s iry, that is n, - v*

is

more usefirl

thdn the metric T. Also,

generaily

it

induces

not trivial

quotient. spaces..

rot

"""-pìã,-"t tt"'dînamicat

system

..appearing - in

. exemple

4, óne obtain three'II

jequivalence

"1"r;;;

(upon the sign

of. x).

ular

classes

of

motions.

First of

all

definsd Iw j(") : [email protected]), is

conti-

zur)..

Thus every class of

fl-equi- -equivalelce. So,

for

ll-equivaleäce

contained in the

theorem

2

and

L

e m m

a 5. The set of

motions þosi,tiaety

poisson

stabr,e ,ís crosed,

in II.

Proof.

r'et

the-

motions

æn,

positivery

poisson

stable and

æn such

t!^l S(",,, æ,)*0 fot n-co.

TËus,

for any natural þ

there

is a øl

such

that:

(17) [email protected],,,,n.¡ q

i.e. for soÍre s¿,

lsel

< ll3þ we

lnav

fi

being positively

poisson

stable

so

1

such

that:

d,(x,

n(x,

"¡)) < llþ

By the

theorem

of poincaré-B"náixon

[10]

we have

the

following:

Conseçluence 2. For a

d'ynømi,cø|, system, on tke þlane, the set of þeriod.ic rnot'ions

is

closed'

in

IL

Def initíon7.

The function

f :R*X

has e-þeriod"c

if for

øny,

t e R, d(Í(t + r), f(t)) <

e.

L

e m m

a 6. If tke

cløss

of lI- e of a.

motion æ*0,

ot

þass

xo, then

for

ry

d,o

n n

xo, uhiclt,

{e. is uniformly

continuous

on [-1,

,

1!, 4l'

such

that for any t,s = [-1, r + ll, with

l,

-

sl

< 48, we

have:

(18)

d'(æ(xo,

t),

n(xo,

t)) < å

.

Ry

hypothesis, there

is a x e X

such

that

S(æ,., Íç,)

I I

and' æ,(l)

lir anï teR. Thus for any t eR, there is øs¡, lsr-ll <28

that

d,(æ(x,t), æ(xo, s

)) < 2S' So we have

succesively:

ls,+"

-

(r,

*")l(

ls,+,

-

(t

+t)l *

ls,

- rl <

and,

denoting s¿¡"

-

na

+ r0, with lo e [0, r),

n,

e Z:

ls,+"

- nr -

(s,

f

c

- nr)l <

48,

hence

s¿+t

- tt'r,

st

* c(l - n) = l-1, t f l]

antl by

(18) :

d,(n(xo, s¿¡,), nl()to, s,))

:

d'(rc(xo, Sr+"

- nt),

n(xo, s,

* (l - n)")) < tl7'

Finally:

d'(n(x,t

I r),n(x,t)) 4

d(æ(x,t

I

r),n(xo, s,+'))

*

d'(æ(xo, s¿1"), æ(ø0, s,))-¡

I

d,(rc(xo, s,), æ(x,r))

<

2S

+ ; +

28

(

e,

thus

æ, satisfies

all the

expected' conditions,

Lem ma 7. If the møþ h:X_*Y is uniformly

coøtinuous, then so

is

al,so

tke maþ

h* : C(R,

X)*

C(R,

Y)

d'efined

bv:

(re) (h.(Í))(t) :

h(f (t))

(using

the metric S for the

spaces

of

continuous functions)'

Proof.

For any

e

) 0 there is a..ô, 0 <-l I

e,

with

tEe. property

that d*("x,!) ( ô implies

d,

(k(x),

nOD

<e.

Tf.

f,g = C(R,X)

are such

(6)

108 CH, TOADER

XxR n

-X t*

hx l* -

YxR

o

that S*(f,g) <

8, th.en f91. any

t e R there is a

s,

e R such that

ls, _-

- tl < I and d*U(fl,

S(s,))

< à.

Hence:

min

{d.r(k(f

(t)), h(g(s)));

ls

- rl { e}ç min

{d,r(k(f (t)),

[email protected]));

ls

_ rl <

s)

<

dy(h(Í(t)), h(s(s,)))

<

e.

Changing

the role of f

and

g

we

get

SyØ*(f), h*(e))

<

".

THEoREM S.

Let îc

qnd,

o be

d,ttnamical, systems on comþøct s7laces

-xorcsþect'iuetv

y. rr

thev

are cti.-d'"*lïph;;,";tu"; ííí

quoil,rnt

fI

ønd,

2 of

cløsscs

of

equiuølent motions are homeomorþhic.

Proof. We have the following

diagram:

10

metric

sþaces

11 ÕLÄSSIFICATION OF DYNAMICAL SYSTEMS

Rernarh

5. The condition from

theorem

3 is actually

stronger

that of

theorem

1, and a

class

of

lI-equivalence

may be

properly

tained." in a

class

of

y-equivalence, as shows

the

following:

Exemþtre

6. I,et o be

defined

as

above

by:

(o) ff:o p(l

l'o: op'

109

than ,rcon-

One obtaine

a

single class

of

^¡-equivalence

but two

motions

on

different

trajectories are not fl-equivalent. Thus o is

NS-isomorphic

with !h"

dynamical system æ from

exemple

5 but is not GH-isomorphic with it.

h*

T

I J

'-fi

.l

h II

Y

I lî

t

REFERENCDS

[1]

Bertolino,

M,, Solutions of ilifferential equalions ì,n arbàtrøryt neighbourhoods of giuen functions (Setbo-Croatin). Mat. Vestnik, 13 (21Ì),

l, 2l-33

(1976).

[2]Bhatia, N,P., Franklin, M.L.,

Dynørniaalstlsternsuithoutseþaratrices. tr'unkc.

Ekv., 16, 1-12 (1972).

i3l Bhatia,

N. P., SzeCö, G.P., Stabi,Iilytheory of dynørnical s)lstems. Spriuger-Verlag, New York, Heiclelberg, Berlin, 1970.

t4l H ó j e

k,

O., Cølegorial conceþis in dynømicat syslem lheory. fn ,,Topological Dynamics", J. Auslander antl W.

II.

Gottschalk (Editors), New York

-

Amstertlam: Benja- min, 1968, 243-258.

[5] K e l l e

y,

J. L.,General, Toþology. D. Van Nostrantl Company, fnc. Princeton, New Jersey, 1957.

[6]

Kuratowski, K.,

Toþolog3t,

I-ff.

Academic Ptess, New York and, I,ondon, 1968.

iZl

tvt a ¡ k u s,

\,,

Globøt structuri oJ ordinarlt differential equations in the þlane. Trans. AMS, 76, 127-148 (1954').

[8] M a r k u s, L., Lectuyes in DliÍfeyentiable Dynamics. Regional Conference Series in IVIathe-

matics, suppotted by National Science Foundation, Number 3r 1971.

t9l M a r k u s, I,., Porøltet' d'ynømioal' systems. Topology, B, 47 -57 (1969).

itÓl

¡qemytskii,

V.V.,

Stepanov,

V.V.,Quali'tatiueTheory oJ Diflerentiatr Equations'

[1]

T o a

d

onsi

10t1,

tttl orie

L^-l

[13] U r

a,

their isomorþhisms' Japan

-

U.S. Sem. OrtI' Diff.

cture Notes l!'l:at'ln., 243, Springer Verlag, 1971, 76-90.

[I4]

Vrublevskaya, I.

N., Oz geometric equiuølenae of the trajeoloriesof ilynamiaal systems (Russian). Mat. Sbornik, 42. 361-424, (1957).

Received s'vrr'

1927'

cenrrul leritoriøl aalaul eleatrcnic Sh. Reþublicii 107 3 400 Cluj-Nøþocø o*

where

the first

rectangle

is from the

GH-isomorphism

of

æ

and o,

æ*

and o*

are defined

rv [te¡, k* b; (rE,

¿

""Jitãi"'"Jnäni""l

projections

irr quotient

spaces anð.

h is

defined

by:

î1î"¡ :

Ç,o,

From the continuity. or h*, one

deduces (sge

rs]) the continuity of î.

Fr.tt"ttn the proof it is

eriough

iJì"p"ut'ttre äuäve-"onsia"i"iió"r-ráï

Remarh,

3. v/e

cannot use

the commutativity of the last two

rectan_

gles

and avoid

so

the proof of ilt"-"ã"tinuilv ái ãi,'îãäo."

rc*

and

o*

may be

discontinuous.

Remarh,

4. As

in

-

the

case

of

NS_isomorphism, theorem

S is not sufficient

for - GÈ_Iso-orpfil.rr¡--'

wing:

Exemþle

5' Let

æ

an. o

be-.dynamicar systems defined

by the

dif-

fererrtial

dystems

(in polar Ã""øi"áiár- - -'

(") lþ:o

tb:t (P<l)

the

condition from how shows

the

follo-

(") p:0

b:P (p< l)

I I

The

systems

are Ns-is morphic but not

GH-isomorphic, although the

quotient

spaces

fi and î ur"

homeomorphic being singretons.

Figure

Updating...

References

Related subjects :