MATI{EMAîICA
-
REVUE D'ANAI{YSE NUMÉRIQUE ÞT DE TIIÉORIE DE IT'APPROXIMATIONL'ANALYSE
NUMERIOUEET LA THÉORIE DB
L'APPROXIMATION TomeB,
No2'
1979,PP.99-109
oNTHECLASSIFICATIONoFDYNAMICALSYSTEMS
by
GH. TOADER (Cluj-Napoca)
1.
InfioductionThe set of
dYnamical sYstemsproblem" is
unsolvable. How-åittg so-" Partial
answels' So ontäinsa
nãcessary and' suffi-In thjs
papef we pfopose á.methoclsimilar to
l:hatof
Vrublevskayabut
basecl dn-a
simpler
definitionthe
Pompeiu-Hausdorffmetric in
th'similar
dnein the
caseof the
GH'clefined
for the set of
continuousin
[11]and
have usedthen in a
Pri
i
¡
100 GII, TOADËR
2. Basic notations and delinitions
I-,et
X be a metric
spacewith a fixed metric d,:
d,*.Êor
a.e X,
r>0 and A (X we
denoteby:
(1)
d'(ø,A) : ial
{d,(a, x); x e A}
the
distancefrom ø to A
andby:
(2) V(ø,r) : {x e X;
d,(a,x) < r}
the ball of radius r and center a. For a
functionf
:X* Y and a
setAUX we
denote:(3) Í(A) : {Í(x);
tce A}.
Def inition
1.A
d,ynømicø|, system onX'i,s a
continuous funct'ionn: X X R- X that
søti,sfi,es the fol'l'owing øxioms :(Ð n(x,0) : x, foÍ every x in X;
(ä)
æ(rc(x,l),s):
æ(x,tI s), for x in X,
úand
sin
R.Def inition 2. For eny x e X
one d'efines:a) tke
mot'ion(through x) n,: R-* X by:
f4) n,(t) :
æ(x,t);b) the
trajectoryof x by:
(5)
[email protected]): {æ(x,t); I e
R} ic)
the þositiuel,imit
setof x
by :(6) L*(x) : {y = X;
Jtn ---+| æ,
n(x,t,)----y}.Def inition 3. A þoint x e X
(andits trajectory) is
søi'd'to
be:a)
cri'ticøl',iÍ y(*) : {x};
b)
þeriod,icif
tkereis ø þ10,
such that æ(x,t + þ) :
rc(r,t)for
øllteR; c) L
støbl,e,iÍ [email protected])
i's rel'atiael'y comþact;d) þ
Poisson støble,i'f x e L+(x);
e)
e-støbl,e (inthe
sense of M.BEr
or{rNolll) if øny
e-ne'ighbourhood'oÍ [email protected])
contø'í,nsat
leøstø
trajectory d'i'stinctoÍ
[email protected]).Def inition 4. Let n
ønd,o
be d'ynamical' systems onX
oel,y
on Y. Tkey
øre NS-'ísomorþkic (respectively GH-isomorphic) ex,istsø
homeomorþhdsmh: X----Y,
uhích' þreserues trajectories,(7)
y(h(x)): [email protected]\, for all n e X
resþect'i-
if
theretkøt is :
3 CLASSIFICATIoN oF DYNAMICAL SYSTEMS 101
(respectively
which
makes commutativethe following
diagram:X x R
n-X
(B)
lz* r. I,
v i n -'--Y
that is:
(B') k(n(x,t)): "(h(x),/), for
a71x e X and
' e
R)'In what follows we shall use the set
1:
[0,1]
andthe
function).:[0, æ]*.I
defined bY:I' Îorte
[0,oo)(e) r(t) :{t+,
I I forl:co
on the set of non-empty
subsetsof x
weshall
usethe
premetricp oi Þoãpeiu-Hausclorff
[-61- defineafor anv M, N C X bv:
(10)
P(M, N) : I(sup {sup {d(ø,N) ; x e M\,
sup{d'(y,M); y = N}})' I,et c(R,X) be the set of all
continuous functionsfrom R to X.
We
need sòverál metricesfor
C(R,X)
:a) the uniform metric T,
defined bY:(11) T(f,e): I
(sup{d(Í(t),s(t));t = R}), for
anvÍ' g = C(R' x)
;b)themetricK,whichgeneratesthecompact-opentopology,
defined
by:
K(Í, Ð :i r-"
r(max {d(f Ø,e(¿));
l¿l< n\);
the metric S, of
Pompeiu- Hausdorff type, which we
definedI bv:
s(l
g):
tr(sup{so(l s),
so(g, "f)})'2
(r2)
in tl
c (13)) 1
where
(13') S,(l
g):inf {r > 0;Vr e R, inf {d(f(t),
e(s));
l¿-
sl{ r\ <r}'
with the usual
convention: inf
Ø:
æ 'ft is
easyto
checkthat for any.f,g = C(R,X):
(14) K(f, e) < ?Lt e) and s(/,
s)< T(l
e)702 GH, ToADER
and, as we proved in [11], the identity
function :i
: (C(R, X),S)*
(C(R, X), K)is
continuous.If it is
necessary,we indicate by a
lowerindex the
space usedin the definition of a certain metric (for
exempleP¡).
L
e mma 2, If f : X---,Y is a uniform
continuousfunction uith
theþroþerty that
f(M)"e"w Íor any M e
(J then the ind,uced, functioøf :u- -W is
continuous.Proof
. we
proceedby
contradiction.Le!
ug.supp-ggg.that there
existsu cottvetg"nt
sé^quenceM**M
suchlhat.f(M") *Í(A), that is
one canfind a r )
O sucñthat
for-any nothete
existsn)
ttofor what P"(Í(M")' Í(M))> r. There are two
possibilities:a) sup {d"(f
(*),f(MD; x e M"o)> r;
b) sq {d'(f(M"u), fU))', ! e M}2r,
for
somefrh*æ. In the first
case,for any å
one canfind a
xnhe M'rh suchthat:
(15)
dt([email protected]"*),Í(x)) > ,, for
anY,í e M.
But
/being
uniformly continuous there existsa
s> 0,
suchlhal
d,v(x,y)1 ( s'impliãs d't(f(x),Í(Y)) <r,
andwith the property that for
h)
hu,exists
lo = M
wít]¡ d'v(x,*, Yo)<
s, hedicts
(15).fn the
caseb) one fall the simple continuity of /.
Consequence 1. Let X
ønd'Y
be comþactmlllt-sþaces,-V o!
W famities
oi.subsetsof X
resþectiael,yY. IÍ Í(M) =
Wfor
ønynMe
Ua.nd,
Í-1(N) = IJ for any N e W,
thenthe
ind,uced' functionf : U"-W
isa
homeomorphism.I,et us äpply
theseresults to
dynamical systems-For a
dynamical systemtr ott if
we denoteby læ the family of all
trajectories.Ifow
onekîows [A],
1.æis a partition of X
and we consideron it,
as before,the premetric P of
Pompeiu-
Hausdorff andthe
corresponding equiva- lencËrelation which
we-name in this
case 1-equivalence. One obtainsthe quotient
spaceîr, und the
following:TIrEOREM
L If
tke d,ynami,cal systems ¡c ønd, a d,efined,-on tke comþøctrnetric sþacets X^rbsþectiael,y
Y
are-NS-isomorþkic, tken the corresþond'ing quoti,ent sþaceslæ
ønd,lo
øre homeomorþhic.Rernarh
2. This condition is not sufficient for
Ns-isomorphism how showsthe
following:ExemþIe
l. Let X:Y : {(x,i) e Rzi x'*y1.5-3}
?s- subspacesof R2. The dynamical systems defiàed.-by autonomous
differential
equations(in polar
coordinates) :ä:p(p-1)(p-s);
g:1.
4 5 CL,A.SSIFICATION OF DYNAMICAL SYSTEMS 103
3.
Conditionslor
NS-
isomorphismI.et X and Y be two metric
spaces, and, æand o two
dynamical systemson X
respectivelyon Y. For theirs
NS-isomorphismthe
twofamilies of trajectories (of
æand of o) must
correspond. eachto
otherby o
homeomorphisrnk: X-"Y. But the families
beinginfinite, it
isdilficult to check this
correSpondence.Thus it is natural to look for criterions
which contains simpler conditions,at least
necessary,for
equi- valence.We begin with
somelrrore
general considerations.On
any family of
subsetsof X we
considerthe
premetricP
definedby
(10).I.et U be
sucha
family.Def inition 5.
We saythat tuo
setsM,N C{ are
U-equivalent(and
denoteby M - N (rel UD i"f
there existsa
continuousfunction h:
I* U
suchthøt
h(0): M
ønd,h(l) : ¡¡.
Remørh, 1.
It is
easyto verify that
U-equivalenceis an
equivalencerelation,
henceit
inducesa partition of U. We
denotethe
equivalence classof M by û ^na the quotient
spacebv
Û.I,emma
1.If U
ønd,W
arefømilies of
subsetsof X
resþectiael,yY, tken øny
continuous funct'i,onF: UnW
d'efinesa
continwous function^^^^¡A
F:UnW by F(M):F(M).
Proof.
It is
obviousthat M - N (rel U)
impliesF(M) -
F(.N)(relW) so
LlnatF is well
defined. Usingthe
continuous canonical projectionsi:U-U and j:W*W we obtain the following
diagram:(JF-W
l¿ l¡
I ^ l'
Ù ' -û,
F'rom
his commutativity
resultsthe continuity of Ê b"""or"
7 oF is
con-tinuous
(see t5l).(")
r04 and
(")
p:
GH, TOADER
*: x(x - l)
!:0
6
CLASSIFICATION OF DYNAMICAL SYSTEMS 105
I
Then the
l,agrangewith the
trajectorYthat is the
theoremLemmaS'Iftkecløssof.y-equiuølenceoføcriticøl'þoi'ntxisnot a
singleton, themx is
e-støbl'e'The condition is not sufficient as
showsthe
following:Exemþle
3. In the dynamical
system generatedby the
differentialsystem (iå Polar
coordinates)p
sinl ,
f.or p*0i
P
0 , for P:Q' 0:1;
the origin is an
e-stablecritical point
whose classof
y-equivalence rs a singleton.4.
Conilitionsfor
GH-
isomorphism1
becausethe GII-
irs
NS-isomorPhism[13]). But
we look For a dynamical system 7r onX,leL us
considerthe
spaceof
motions :fI:{zcn; xeX)
and the
maPæ*:X* [I
defined bY:(16)
æ*(x):
nnThe
useof the metric T f.or fI
Protwo motions on the
same trajectothe following:
Exemþle
4. Let
æbe a
dynamical systemon R definedby n(x't):
:
rc' exp (t).
1Lx* Y we
have:T(æ',
nv):
tr(sup{lr - yl exp (t); t e R}) :
1'stable
traiectory {(x,l); 0 < x < 1} is
'¡-equivaleut{(x.O\'. d < x < i} wtrich is not
l,agrange staole'là-
;å¿ true if
one renollncesat
completness' tp(l-p) if0<p(1;
0 if 1 < p ( 2;
(p-2)(p-3) íf 2<p<3;
0:1
afe not Ns-isomorphic although the quotient spaces l1rc
and Ilo
are homeo- morphic.As
concernsthe
equivalence classes, we havethe
following:the systenr,
ed,on a
comþIet,loc.øl'IyX,
aisof
ceof
ø Løgrønge støbl'enly
stableProof.
Let
Tobe
aÍ"agtange stable,trajectory, 11:
Y0. andh: I*læ
continuoús
and,'ðuch thaí nP\ :
"¡o,h(l): Yr:
D-eno-telv I : {t-=*!
|nftf i,
Lagrange stable).of
còúrse 6".=i,'thai is ¡+Ø' Let
toe J' T¡.
space
X being locally
compactand ffi
c:gmpact, k,(to) hasa
compact"ãi*rr¡å"tr'àãål ur"l
iå7 ir
ãpenin /. Èdî /
is-also closedin 1.
rndeed,ii;,;";;pp;."'tir" "onúrty,'thcle exists a
sequence (1,)in / which
hasa limit point
toê J.
Thatsequence
(ø,) which has
nohai'e also k(t,)-
71¡0]r(!n th
the set of
subsetsof X). If
bers,
then for
everYþ,
theteis a
nimplies P(k(t^),h(to))
<!'t'.tm1)Ntanð'yl, =îñsuchthat
d(y"'x,) <
< 3 for afly n.
BecauseTAÃ is
compact, thereis a
subsequence (yl,o)of (yt-) which is
convergent.We may
assumethat a0'"0,
y|r)< 3
for anyh
anð.l.
Denotingx,o tty
x'0,t'. obtain the
subsequence(øl) oÍ
(x*) suchthat
d,(xte,x!) (
e,for
anyh
andl'.
Stepby
step,for þ :2, 3,
' ' 'we obtain the
sequence @!,)such that d(x!, xt) (
e¡for
anyh
anð' l,(x!"\ being
subsequenceof lxl-'). So çxi) is a
Cauchy. sequence. and,Ï"f"itrg--Ëo-piãi=it is "
convärgãnt subiequ_"ttc".of (1,) in
contradiction*itrr--iË" urän*þtiou- Att"t uil, J : I, ^that is
^¡fis
l,agrange stable.ExemþIe
2. Let X :
R2- {(0,0)} with the usual Euclidean
metric and. rcthå
dynamical system gèieratedby the differential
system:p:
t
106 GH. TOADER B
I
CLASSIFICATION OF DYNAMICAL SYSTEMS 107*xo
such
that is no motion
is. equivalentwith
another(taking the metric T
forthe
spaceof
motions), -ln what follows we shall
useavoid
thesedifficulties. With this
cD
ef initio n
G. We say thatIent (and nII,
suclr denotethøt
h(0)by : ¡- - n,,\'if
the".
;;Nd"h(l)As
abovewe
denotethe
classof
Il-equivalenceof
nnby i
and thequotient
spaceII/_by û.
L
e mtna 4. If
y(x): y(y), then
nn-
ær._ ?o-tf.By the
hypothesis!:n(x, s) with
somes e R. Definig å:
/*II by
h(t)
:
æn1*,¿"¡it is
continuous becauses(h(tr),
h(tr))< lr, _ t,l .
lsland Remark k(0)
:-rr, 2.
Thusþ(l) : s iry, that is n, - v*
is
more usefirlthdn the metric T. Also,
generailyit
inducesnot trivial
quotient. spaces..rot
"""-pìã,-"t tt"'dînamicat
system
..appearing - in
. exemple
4, óne obtain three'II
jequivalence"1"r;;;
(upon the sign
of. x).ular
classesof
motions.First of
alldefinsd Iw j(") : [email protected]), is
conti-zur)..
Thus every class of
fl-equi- -equivalelce. So,for
ll-equivaleäcecontained in the
theorem2
andL
e m ma 5. The set of
motions þosi,tiaetypoisson
stabr,e ,ís crosed,in II.
Proof.
r'et
the-motions
æn,positivery
poissonstable and
æn sucht!^l S(",,, æ,)*0 fot n-co.
TËus,for any natural þ
thereis a øl
suchthat:
(17) [email protected],,,,n.¡ q
i.e. for soÍre s¿,
lsel< ll3þ we
lnavfi
being positively
poissonstable
so1
suchthat:
d,(x,n(x,
"¡)) < llþ
By the
theoremof poincaré-B"náixon
[10]
we havethe
following:Conseçluence 2. For a
d'ynømi,cø|, system, on tke þlane, the set of þeriod.ic rnot'ionsis
closed'in
ILDef initíon7.
The functionf :R*X
has e-þeriod"cif for
øny,t e R, d(Í(t + r), f(t)) <
e.L
e m ma 6. If tke
cløssof lI- e of a.
motion æ*0,ot
þass
xo, thenfor
ry
d,on n
xo, uhiclt,{e. is uniformly
continuouson [-1,
,
1!, 4l'
suchthat for any t,s = [-1, r + ll, with
l,-
sl< 48, we
have:(18)
d'(æ(xo,t),
n(xo,t)) < å
.Ry
hypothesis, thereis a x e X
suchthat
S(æ,., Íç,)I I
and' æ,(l)lir anï teR. Thus for any t eR, there is øs¡, lsr-ll <28
that
d,(æ(x,t), æ(xo, s)) < 2S' So we have
succesively:ls,+"
-
(r,*")l(
ls,+,-
(t+t)l *
ls,- rl <
4òand,
denoting s¿¡"-
na+ r0, with lo e [0, r),
n,e Z:
ls,+"
- nr -
(s,f
c- nr)l <
48,hence
s¿+t- tt'r,
st* c(l - n) = l-1, t f l]
antl by
(18) :d,(n(xo, s¿¡,), nl()to, s,))
:
d'(rc(xo, Sr+"- nt),
n(xo, s,* (l - n)")) < tl7'
Finally:
d'(n(x,t
I r),n(x,t)) 4
d(æ(x,tI
r),n(xo, s,+'))*
d'(æ(xo, s¿1"), æ(ø0, s,))-¡I
d,(rc(xo, s,), æ(x,r))<
2S+ ; +
28(
e,thus
æ, satisfiesall the
expected' conditions,Lem ma 7. If the møþ h:X_*Y is uniformly
coøtinuous, then sois
al,sotke maþ
h* : C(R,X)*
C(R,Y)
d'efinedbv:
(re) (h.(Í))(t) :
h(f (t))(using
the metric S for the
spacesof
continuous functions)'Proof.
For any
e) 0 there is a..ô, 0 <-l I
e,with
tEe. propertythat d*("x,!) ( ô implies
d,(k(x),
nOD<e.
Tf.f,g = C(R,X)
are such108 CH, TOADER
XxR n
-X t*
hx l* -
YxR
othat S*(f,g) <
8, th.en f91. anyt e R there is a
s,e R such that
ls, _-- tl < I and d*U(fl,
S(s,))< à.
Hence:min
{d.r(k(f(t)), h(g(s)));
ls- rl { e}ç min
{d,r(k(f (t)),[email protected]));
ls_ rl <
s)<
dy(h(Í(t)), h(s(s,)))<
e.Changing
the role of f
andg
weget
SyØ*(f), h*(e))<
".
THEoREM S.
Let îc
qnd,o be
d,ttnamical, systems on comþøct s7laces-xorcsþect'iuetv
y. rr
thevare cti.-d'"*lïph;;,";tu"; ííí
quoil,rntfI
ønd,2 of
cløsscsof
equiuølent motions are homeomorþhic.Proof. We have the following
diagram:10
metric
sþaces
11 ÕLÄSSIFICATION OF DYNAMICAL SYSTEMS
Rernarh
5. The condition from
theorem3 is actually
strongerthat of
theorem1, and a
classof
lI-equivalencemay be
properlytained." in a
classof
y-equivalence, as showsthe
following:Exemþtre
6. I,et o be
definedas
aboveby:
(o) ff:o p(l
l'o: op'
109
than ,rcon-
One obtaine
a
single classof
^¡-equivalencebut two
motionson
differenttrajectories are not fl-equivalent. Thus o is
NS-isomorphicwith !h"
dynamical system æ from
exemple5 but is not GH-isomorphic with it.
h*
T
I J
'-fi
.l
h II
Y
I lî
t
REFERENCDS
[1]
Bertolino,
M,, Solutions of ilifferential equalions ì,n arbàtrøryt neighbourhoods of giuen functions (Setbo-Croatin). Mat. Vestnik, 13 (21Ì),l, 2l-33
(1976).[2]Bhatia, N,P., Franklin, M.L.,
Dynørniaalstlsternsuithoutseþaratrices. tr'unkc.Ekv., 16, 1-12 (1972).
i3l Bhatia,
N. P., SzeCö, G.P., Stabi,Iilytheory of dynørnical s)lstems. Spriuger-Verlag, New York, Heiclelberg, Berlin, 1970.t4l H ó j e
k,
O., Cølegorial conceþis in dynømicat syslem lheory. fn ,,Topological Dynamics", J. Auslander antl W.II.
Gottschalk (Editors), New York-
Amstertlam: Benja- min, 1968, 243-258.[5] K e l l e
y,
J. L.,General, Toþology. D. Van Nostrantl Company, fnc. Princeton, New Jersey, 1957.[6]
Kuratowski, K.,
Toþolog3t,I-ff.
Academic Ptess, New York and, I,ondon, 1968.iZl
tvt a ¡ k u s,\,,
Globøt structuri oJ ordinarlt differential equations in the þlane. Trans. AMS, 76, 127-148 (1954').[8] M a r k u s, L., Lectuyes in DliÍfeyentiable Dynamics. Regional Conference Series in IVIathe-
matics, suppotted by National Science Foundation, Number 3r 1971.
t9l M a r k u s, I,., Porøltet' d'ynømioal' systems. Topology, B, 47 -57 (1969).
itÓl
¡qemytskii,
V.V.,Stepanov,
V.V.,Quali'tatiueTheory oJ Diflerentiatr Equations'[1]
T o ad
onsi10t1,
tttl orie
L^-l
[13] U r
a,
their isomorþhisms' Japan-
U.S. Sem. OrtI' Diff.cture Notes l!'l:at'ln., 243, Springer Verlag, 1971, 76-90.
[I4]
Vrublevskaya, I.
N., Oz geometric equiuølenae of the trajeoloriesof ilynamiaal systems (Russian). Mat. Sbornik, 42. 361-424, (1957).Received s'vrr'
1927'
cenrrul leritoriøl dø aalaul eleatrcnic Sh. Reþublicii 107 3 400 Cluj-Nøþocø o*
where
the first
rectangleis from the
GH-isomorphismof
æand o,
æ*and o*
are definedrv [te¡, k* b; (rE,
¿""Jitãi"'"Jnäni""l
projectionsirr quotient
spaces anð.h is
definedby:
î1î"¡ :
Ç,o,From the continuity. or h*, one
deduces (sgers]) the continuity of î.
Fr.tt"ttn the proof it is
erioughiJì"p"ut'ttre äuäve-"onsia"i"iió"r-ráï
Remarh,
3. v/e
cannot usethe commutativity of the last two
rectan_gles
and avoid
sothe proof of ilt"-"ã"tinuilv ái ãi,'îãäo."
rc*and
o*may be
discontinuous.Remarh,
4. As
in-
the
caseof
NS_isomorphism, theoremS is not sufficient
for - GÈ_Iso-orpfil.rr¡--'wing:
Exemþle
5' Let
æan. o
be-.dynamicar systems definedby the
dif-fererrtial
dystems(in polar Ã""øi"áiár- - -'
(") lþ:o
tb:t (P<l)
the
condition from how showsthe
follo-(") p:0
b:P (p< l)
I I