• Nu S-Au Găsit Rezultate

View of On the classification of dynamical systems

N/A
N/A
Protected

Academic year: 2022

Share "View of On the classification of dynamical systems"

Copied!
6
0
0

Text complet

(1)

MATI{EMAîICA

-

REVUE D'ANAI{YSE NUMÉRIQUE ÞT DE TIIÉORIE DE IT'APPROXIMATION

L'ANALYSE

NUMERIOUE

ET LA THÉORIE DB

L'APPROXIMATION Tome

B,

No

2'

1979,

PP.99-109

oNTHECLASSIFICATIONoFDYNAMICALSYSTEMS

by

GH. TOADER (Cluj-Napoca)

1.

Infioduction

The set of

dYnamical sYstems

problem" is

unsolvable. How-

åittg so-" Partial

answels' So ontäins

a

nãcessary and' suffi-

In thjs

papef we pfopose á.methocl

similar to

l:hat

of

Vrublevskaya

but

basecl dn

-a

simpler

definition

the

Pompeiu-Hausdorff

metric in

th'

similar

dne

in the

case

of the

GH'

clefined

for the set of

continuous

in

[11]

and

have used

then in a

Pr

i

i

¡

(2)

100 GII, TOADËR

2. Basic notations and delinitions

I-,et

X be a metric

space

with a fixed metric d,:

d,*.

Êor

a.

e X,

r>0 and A (X we

denote

by:

(1)

d'(ø,

A) : ial

{d,(a, x)

; x e A}

the

distance

from ø to A

and

by:

(2) V(ø,r) : {x e X;

d,(a,

x) < r}

the ball of radius r and center a. For a

function

f

:

X* Y and a

set

AUX we

denote:

(3) Í(A) : {Í(x);

tc

e A}.

Def inition

1.

A

d,ynømicø|, system on

X'i,s a

continuous funct'ion

n: X X R- X that

søti,sfi,es the fol'l'owing øxioms :

(Ð n(x,0) : x, foÍ every x in X;

(ä)

æ(rc(x,l),s)

:

æ(x,t

I s), for x in X,

ú

and

s

in

R.

Def inition 2. For eny x e X

one d'efines:

a) tke

mot'ion

(through x) n,: R-* X by:

f4) n,(t) :

æ(x,t);

b) the

trajectory

of x by:

(5)

x@)

: {æ(x,t); I e

R} i

c)

the þositiue

l,imit

set

of x

by :

(6) L*(x) : {y = X;

Jtn ---+

| æ,

n(x,t,)----y}.

Def inition 3. A þoint x e X

(and

its trajectory) is

søi'd'

to

be:

a)

cri'ticøl',

iÍ y(*) : {x};

b)

þeriod,ic

if

tkere

is ø þ10,

such that æ(x,

t + þ) :

rc(r,t)

for

øll

teR; c) L

støbl,e,

t@)

i's rel'atiael'y comþact;

d) þ

Poisson støble,

i'f x e L+(x);

e)

e-støbl,e (in

the

sense of M.

BEr

or{rNo

lll) if øny

e-ne'ighbourhood'

oÍ t@)

contø'í,ns

at

leøst

ø

trajectory d'i'stinct

t@).

Def inition 4. Let n

ønd,

o

be d'ynamical' systems on

X

oel,y

on Y. Tkey

øre NS-'ísomorþkic (respectively GH-isomorphic) ex,ists

ø

homeomorþhdsm

h: X----Y,

uhích' þreserues trajectories,

(7)

y(h(x))

: ltk@\, for all n e X

resþect'i-

if

there

tkøt is :

3 CLASSIFICATIoN oF DYNAMICAL SYSTEMS 101

(respectively

which

makes commutative

the following

diagram:

X x R

n

-X

(B)

lz

* r. I,

v i n -'--Y

that is:

(B') k(n(x,t)): "(h(x),/), for

a71

x e X and

' e

R)'

In what follows we shall use the set

1

:

[0,

1]

and

the

function

).:[0, æ]*.I

defined bY:

I' Îorte

[0,oo)

(e) r(t) :{t+,

I I forl:co

on the set of non-empty

subsets

of x

we

shall

use

the

premetric

p oi Þoãpeiu-Hausclorff

[-61- definea

for anv M, N C X bv:

(10)

P(M, N) : I(sup {sup {d(ø,N) ; x e M\,

sup

{d'(y,M); y = N}})' I,et c(R,X) be the set of all

continuous functions

from R to X.

We

need sòverál metrices

for

C(R,

X)

:

a) the uniform metric T,

defined bY:

(11) T(f,e): I

(sup

{d(Í(t),s(t));t = R}), for

anv

Í' g = C(R' x)

;

b)themetricK,whichgeneratesthecompact-opentopology,

defined

by:

K(Í, Ð :i r-"

r(max {d(f Ø,e(¿))

;

l¿l

< n\);

the metric S, of

Pompeiu

- Hausdorff type, which we

defined

I bv:

s(l

g)

:

tr(sup

{so(l s),

so(g, "f)})'

2

(r2)

in tl

c (13)

) 1

where

(13') S,(l

g)

:inf {r > 0;Vr e R, inf {d(f(t),

e(s))

;

l¿

-

sl

{ r\ <r}'

with the usual

convention

: inf

Ø

:

æ '

ft is

easy

to

check

that for any.f,g = C(R,X):

(14) K(f, e) < ?Lt e) and s(/,

s)

< T(l

e)

(3)

702 GH, ToADER

and, as we proved in [11], the identity

function :

i

: (C(R, X),

S)*

(C(R, X), K)

is

continuous.

If it is

necessary,

we indicate by a

lower

index the

space used

in the definition of a certain metric (for

exemple

P¡).

L

e m

ma 2, If f : X---,Y is a uniform

continuous

function uith

the

þroþerty that

f(M)"e"w Íor any M e

(J then the ind,uced, functioø

f :u- -W is

continuous.

Proof

. we

proceed

by

contradiction.

Le!

ug.supp-ggg.

that there

exists

u cottvetg"nt

sé^quence

M**M

such

lhat.f(M") *Í(A), that is

one can

find a r )

O sucñ

that

for-any no

thete

exists

n)

tto

for what P"(Í(M")' Í(M))> r. There are two

possibilities:

a) sup {d"(f

(*),

f(MD; x e M"o)> r;

b) sq {d'(f(M"u), fU))', ! e M}2r,

for

some

frh*æ. In the first

case,

for any å

one can

find a

xnhe M'rh such

that:

(15)

dt(f@"*),

Í(x)) > ,, for

anY

e M.

But

/being

uniformly continuous there exists

a

s

> 0,

such

lhal

d,v(x,y)

1 ( s'impliãs d't(f(x),Í(Y)) <r,

and

with the property that for

h

)

hu,

exists

lo = M

wít]¡ d'v(x,*, Yo)

<

s, he

dicts

(15).

fn the

case

b) one fall the simple continuity of /.

Consequence 1. Let X

ønd'

Y

be comþact

mlllt-sþaces,-V o!

W famities

oi.subsets

of X

resþectiael,y

Y. IÍ Í(M) =

W

for

ønynM

e

U

a.nd,

Í-1(N) = IJ for any N e W,

then

the

ind,uced' function

f : U"-W

is

a

homeomorphism.

I,et us äpply

these

results to

dynamical systems-

For a

dynamical system

tr ott if

we denote

by læ the family of all

trajectories.

Ifow

one

kîows [A],

1.æ

is a partition of X

and we consider

on it,

as before,

the premetric P of

Pompeiu

-

Hausdorff and

the

corresponding equiva- lencË

relation which

we-

name in this

case 1-equivalence. One obtains

the quotient

space

îr, und the

following:

TIrEOREM

L If

tke d,ynami,cal systems ¡c ønd, a d,efined,-on tke comþøct

rnetric sþacets X^rbsþectiael,y

Y

are-NS-isomorþkic, tken the corresþond'ing quoti,ent sþaces

ønd,

lo

øre homeomorþhic.

Rernarh

2. This condition is not sufficient for

Ns-isomorphism how shows

the

following:

ExemþIe

l. Let X:Y : {(x,i) e Rzi x'*y1.5-3}

?s- subspaces

of R2. The dynamical systems defiàed.-by autonomous

differential

equations

(in polar

coordinates) :

ä:p(p-1)(p-s);

g:1.

4 5 CL,A.SSIFICATION OF DYNAMICAL SYSTEMS 103

3.

Conditions

lor

NS

-

isomorphism

I.et X and Y be two metric

spaces, and, æ

and o two

dynamical systems

on X

respectively

on Y. For theirs

NS-isomorphism

the

two

families of trajectories (of

æ

and of o) must

correspond. each

to

other

by o

homeomorphisrn

k: X-"Y. But the families

being

infinite, it

is

dilficult to check this

correSpondence.

Thus it is natural to look for criterions

which contains simpler conditions,

at least

necessary,

for

equi- valence.

We begin with

some

lrrore

general considerations.

On

any family of

subsets

of X we

consider

the

premetric

P

defined

by

(10).

I.et U be

such

a

family.

Def inition 5.

We say

that tuo

sets

M,N C{ are

U-equivalent

(and

denote

by M - N (rel UD i"f

there exists

a

continuous

function h:

I* U

such

thøt

h(0)

: M

ønd,

h(l) : ¡¡.

Remørh, 1.

It is

easy

to verify that

U-equivalence

is an

equivalence

relation,

hence

it

induces

a partition of U. We

denote

the

equivalence class

of M by û ^na the quotient

space

bv

Û.

I,emma

1.

If U

ønd,

W

are

fømilies of

subsets

of X

resþectiael,y

Y, tken øny

continuous funct'i,on

F: UnW

d'efines

a

continwous function

^^^^¡A

F:UnW by F(M):F(M).

Proof.

It is

obvious

that M - N (rel U)

implies

F(M) -

F(.N)(rel

W) so

Llnat

F is well

defined. Using

the

continuous canonical projections

i:U-U and j:W*W we obtain the following

diagram:

(JF-W

l¿

I ^ l'

Ù ' -û,

F'rom

his commutativity

results

the continuity of Ê b"""or"

7 o

F is

con-

tinuous

(see t5l).

(")

(4)

r04 and

(")

p:

GH, TOADER

*: x(x - l)

!:0

6

CLASSIFICATION OF DYNAMICAL SYSTEMS 105

I

Then the

l,agrange

with the

trajectorY

that is the

theorem

LemmaS'Iftkecløssof.y-equiuølenceoføcriticøl'þoi'ntxisnot a

singleton, them

x is

e-støbl'e'

The condition is not sufficient as

shows

the

following:

Exemþle

3. In the dynamical

system generated

by the

differential

system (iå Polar

coordinates)

p

sinl ,

f.or p

*0i

P

0 , for P:Q' 0:1;

the origin is an

e-stable

critical point

whose class

of

y-equivalence rs a singleton.

4.

Conilitions

for

GH

-

isomorphism

1

because

the GII-

irs

NS-isomorPhism

[13]). But

we look For a dynamical system 7r on

X,leL us

consider

the

space

of

motions :

fI:{zcn; xeX)

and the

maP

æ*:X* [I

defined bY:

(16)

æ*(x)

:

nn

The

use

of the metric T f.or fI

Pro

two motions on the

same trajecto

the following:

Exemþle

4. Let

æ

be a

dynamical system

on R definedby n(x't):

:

rc

' exp (t).

1L

x* Y we

have:

T(æ',

nv):

tr(sup

{lr - yl exp (t); t e R}) :

1'

stable

traiectory {(x,l); 0 < x < 1} is

'¡-equivaleut

{(x.O\'. d < x < i} wtrich is not

l,agrange staole'

là-

;å¿ true if

one renollnces

at

completness' t

p(l-p) if0<p(1;

0 if 1 < p ( 2;

(p-2)(p-3) íf 2<p<3;

0:1

afe not Ns-isomorphic although the quotient spaces l1rc

and Ilo

are homeo- morphic.

As

concerns

the

equivalence classes, we have

the

following:

the systenr,

ed,

on a

comþIet,loc.øl'Iy

X,

ais

of

ce

of

ø Løgrønge støbl'e

nly

stable

Proof.

Let

To

be

aÍ"agtange stable,trajectory, 11

:

Y0. and

h: I*læ

continuoús

and,'ðuch thaí nP\ :

"¡o,

h(l): Yr:

D-eno-te

lv I : {t-=*!

|

nftf i,

Lagrange stable).

of

còúrse 6".=

i,'thai is ¡+Ø' Let

to

e J' T¡.

space

X being locally

compact

and ffi

c:gmpact, k,(to) has

a

compact

"ãi*rr¡å"tr'àãål ur"l

7 ir

ãpen

in /. Èdî /

is-also closed

in 1.

rndeed,

ii;,;";;pp;."'tir" "onúrty,'thcle exists a

sequence (1,)

in / which

has

a limit point

to

ê J.

That

sequence

(ø,) which has

no

hai'e also k(t,)-

71¡0]r

(!n th

the set of

subsets

of X). If

bers,

then for

everY

þ,

thete

is a

n

implies P(k(t^),h(to))

<!'t'.tm1)Ntanð'yl, =îñsuchthat

d(y"'

x,) <

< 3 for afly n.

Because

TAÃ is

compact, there

is a

subsequence (yl,o)

of (yt-) which is

convergent.

We may

assume

that a0'"0,

y|r)

< 3

for any

h

anð.

l.

Denoting

x,o tty

x'0,

t'. obtain the

subsequence

(øl) oÍ

(x*) such

that

d,(xte,

x!) (

e,

for

any

h

and

l'.

Step

by

step,

for þ :2, 3,

' ' '

we obtain the

sequence @!,)

such that d(x!, xt) (

for

any

h

anð' l,

(x!"\ being

subsequence

of lxl-'). So çxi) is a

Cauchy. sequence. and,

Ï"f"itrg--Ëo-piãi=it is "

convärgãnt subiequ_"ttc".

of (1,) in

contradiction

*itrr--iË" urän*þtiou- Att"t uil, J : I, ^that is

^¡f

is

l,agrange stable.

ExemþIe

2. Let X :

R2

- {(0,0)} with the usual Euclidean

metric and. rc

thå

dynamical system gèierated

by the differential

system:

p:

t

(5)

106 GH. TOADER B

I

CLASSIFICATION OF DYNAMICAL SYSTEMS 107

*xo

such

that is no motion

is. equivalent

with

another

(taking the metric T

for

the

space

of

motions), -

ln what follows we shall

use

avoid

these

difficulties. With this

c

D

ef initio n

G. We say that

Ient (and nII,

suclr denote

thøt

h(0)

by : ¡- - n,,\'if

the

".

;;Nd"h(l)

As

above

we

denote

the

class

of

Il-equivalence

of

nn

by i

and the

quotient

space

II/_by û.

L

e m

tna 4. If

y(x)

: y(y), then

nn

-

ær.

_ ?o-tf.By the

hypothesis

!:n(x, s) with

some

s e R. Definig å:

/*II by

h(t)

:

æn1*,¿"¡

it is

continuous because

s(h(tr),

h(tr))

< lr, _ t,l .

lsl

and Remark k(0)

:-rr, 2.

Thus

þ(l) : s iry, that is n, - v*

is

more usefirl

thdn the metric T. Also,

generaily

it

induces

not trivial

quotient. spaces..

rot

"""-pìã,-"t tt"'dînamicat

system

..appearing - in

. exemple

4, óne obtain three'II

jequivalence

"1"r;;;

(upon the sign

of. x).

ular

classes

of

motions.

First of

all

definsd Iw j(") : t@), is

conti-

zur)..

Thus every class of

fl-equi- -equivalelce. So,

for

ll-equivaleäce

contained in the

theorem

2

and

L

e m m

a 5. The set of

motions þosi,tiaety

poisson

stabr,e ,ís crosed,

in II.

Proof.

r'et

the-

motions

æn,

positivery

poisson

stable and

æn such

t!^l S(",,, æ,)*0 fot n-co.

TËus,

for any natural þ

there

is a øl

such

that:

(17) s@,,,,n.¡ q

i.e. for soÍre s¿,

lsel

< ll3þ we

lnav

fi

being positively

poisson

stable

so

1

such

that:

d,(x,

n(x,

"¡)) < llþ

By the

theorem

of poincaré-B"náixon

[10]

we have

the

following:

Conseçluence 2. For a

d'ynømi,cø|, system, on tke þlane, the set of þeriod.ic rnot'ions

is

closed'

in

IL

Def initíon7.

The function

f :R*X

has e-þeriod"c

if for

øny,

t e R, d(Í(t + r), f(t)) <

e.

L

e m m

a 6. If tke

cløss

of lI- e of a.

motion æ*0,

ot

þass

xo, then

for

ry

d,o

n n

xo, uhiclt,

{e. is uniformly

continuous

on [-1,

,

1!, 4l'

such

that for any t,s = [-1, r + ll, with

l,

-

sl

< 48, we

have:

(18)

d'(æ(xo,

t),

n(xo,

t)) < å

.

Ry

hypothesis, there

is a x e X

such

that

S(æ,., Íç,)

I I

and' æ,(l)

lir anï teR. Thus for any t eR, there is øs¡, lsr-ll <28

that

d,(æ(x,t), æ(xo, s

)) < 2S' So we have

succesively:

ls,+"

-

(r,

*")l(

ls,+,

-

(t

+t)l *

ls,

- rl <

and,

denoting s¿¡"

-

na

+ r0, with lo e [0, r),

n,

e Z:

ls,+"

- nr -

(s,

f

c

- nr)l <

48,

hence

s¿+t

- tt'r,

st

* c(l - n) = l-1, t f l]

antl by

(18) :

d,(n(xo, s¿¡,), nl()to, s,))

:

d'(rc(xo, Sr+"

- nt),

n(xo, s,

* (l - n)")) < tl7'

Finally:

d'(n(x,t

I r),n(x,t)) 4

d(æ(x,t

I

r),n(xo, s,+'))

*

d'(æ(xo, s¿1"), æ(ø0, s,))-¡

I

d,(rc(xo, s,), æ(x,r))

<

2S

+ ; +

28

(

e,

thus

æ, satisfies

all the

expected' conditions,

Lem ma 7. If the møþ h:X_*Y is uniformly

coøtinuous, then so

is

al,so

tke maþ

h* : C(R,

X)*

C(R,

Y)

d'efined

bv:

(re) (h.(Í))(t) :

h(f (t))

(using

the metric S for the

spaces

of

continuous functions)'

Proof.

For any

e

) 0 there is a..ô, 0 <-l I

e,

with

tEe. property

that d*("x,!) ( ô implies

d,

(k(x),

nOD

<e.

Tf.

f,g = C(R,X)

are such

(6)

108 CH, TOADER

XxR n

-X t*

hx l* -

YxR

o

that S*(f,g) <

8, th.en f91. any

t e R there is a

s,

e R such that

ls, _-

- tl < I and d*U(fl,

S(s,))

< à.

Hence:

min

{d.r(k(f

(t)), h(g(s)));

ls

- rl { e}ç min

{d,r(k(f (t)),

n@g));

ls

_ rl <

s)

<

dy(h(Í(t)), h(s(s,)))

<

e.

Changing

the role of f

and

g

we

get

SyØ*(f), h*(e))

<

".

THEoREM S.

Let îc

qnd,

o be

d,ttnamical, systems on comþøct s7laces

-xorcsþect'iuetv

y. rr

thev

are cti.-d'"*lïph;;,";tu"; ííí

quoil,rnt

fI

ønd,

2 of

cløsscs

of

equiuølent motions are homeomorþhic.

Proof. We have the following

diagram:

10

metric

sþaces

11 ÕLÄSSIFICATION OF DYNAMICAL SYSTEMS

Rernarh

5. The condition from

theorem

3 is actually

stronger

that of

theorem

1, and a

class

of

lI-equivalence

may be

properly

tained." in a

class

of

y-equivalence, as shows

the

following:

Exemþtre

6. I,et o be

defined

as

above

by:

(o) ff:o p(l

l'o: op'

109

than ,rcon-

One obtaine

a

single class

of

^¡-equivalence

but two

motions

on

different

trajectories are not fl-equivalent. Thus o is

NS-isomorphic

with !h"

dynamical system æ from

exemple

5 but is not GH-isomorphic with it.

h*

T

I J

'-fi

.l

h II

Y

I lî

t

REFERENCDS

[1]

Bertolino,

M,, Solutions of ilifferential equalions ì,n arbàtrøryt neighbourhoods of giuen functions (Setbo-Croatin). Mat. Vestnik, 13 (21Ì),

l, 2l-33

(1976).

[2]Bhatia, N,P., Franklin, M.L.,

Dynørniaalstlsternsuithoutseþaratrices. tr'unkc.

Ekv., 16, 1-12 (1972).

i3l Bhatia,

N. P., SzeCö, G.P., Stabi,Iilytheory of dynørnical s)lstems. Spriuger-Verlag, New York, Heiclelberg, Berlin, 1970.

t4l H ó j e

k,

O., Cølegorial conceþis in dynømicat syslem lheory. fn ,,Topological Dynamics", J. Auslander antl W.

II.

Gottschalk (Editors), New York

-

Amstertlam: Benja- min, 1968, 243-258.

[5] K e l l e

y,

J. L.,General, Toþology. D. Van Nostrantl Company, fnc. Princeton, New Jersey, 1957.

[6]

Kuratowski, K.,

Toþolog3t,

I-ff.

Academic Ptess, New York and, I,ondon, 1968.

iZl

tvt a ¡ k u s,

\,,

Globøt structuri oJ ordinarlt differential equations in the þlane. Trans. AMS, 76, 127-148 (1954').

[8] M a r k u s, L., Lectuyes in DliÍfeyentiable Dynamics. Regional Conference Series in IVIathe-

matics, suppotted by National Science Foundation, Number 3r 1971.

t9l M a r k u s, I,., Porøltet' d'ynømioal' systems. Topology, B, 47 -57 (1969).

itÓl

¡qemytskii,

V.V.,

Stepanov,

V.V.,Quali'tatiueTheory oJ Diflerentiatr Equations'

[1]

T o a

d

onsi

10t1,

tttl orie

L^-l

[13] U r

a,

their isomorþhisms' Japan

-

U.S. Sem. OrtI' Diff.

cture Notes l!'l:at'ln., 243, Springer Verlag, 1971, 76-90.

[I4]

Vrublevskaya, I.

N., Oz geometric equiuølenae of the trajeoloriesof ilynamiaal systems (Russian). Mat. Sbornik, 42. 361-424, (1957).

Received s'vrr'

1927'

cenrrul leritoriøl aalaul eleatrcnic Sh. Reþublicii 107 3 400 Cluj-Nøþocø o*

where

the first

rectangle

is from the

GH-isomorphism

of

æ

and o,

æ*

and o*

are defined

rv [te¡, k* b; (rE,

¿

""Jitãi"'"Jnäni""l

projections

irr quotient

spaces anð.

h is

defined

by:

î1î"¡ :

Ç,o,

From the continuity. or h*, one

deduces (sge

rs]) the continuity of î.

Fr.tt"ttn the proof it is

eriough

iJì"p"ut'ttre äuäve-"onsia"i"iió"r-ráï

Remarh,

3. v/e

cannot use

the commutativity of the last two

rectan_

gles

and avoid

so

the proof of ilt"-"ã"tinuilv ái ãi,'îãäo."

rc*

and

o*

may be

discontinuous.

Remarh,

4. As

in

-

the

case

of

NS_isomorphism, theorem

S is not sufficient

for - GÈ_Iso-orpfil.rr¡--'

wing:

Exemþle

5' Let

æ

an. o

be-.dynamicar systems defined

by the

dif-

fererrtial

dystems

(in polar Ã""øi"áiár- - -'

(") lþ:o

tb:t (P<l)

the

condition from how shows

the

follo-

(") p:0

b:P (p< l)

I I

The

systems

are Ns-is morphic but not

GH-isomorphic, although the

quotient

spaces

fi and î ur"

homeomorphic being singretons.

Referințe

DOCUMENTE SIMILARE

For the quasioperations the interval arithmetic is not inclusion mono- tonic.. \Miss' Berlin ected with inversability of complex ervals) is the scope of the

The Magnetoresistance effect is caused by the double exchange action between Mn 3+ and Mn 4+ ions [13] , The magnetoresistance peak value M RP of reduced samples B2-B4

The present study aims to investigate the possible aromatic character of 1,2,4- heterobenzenes of type (Λ 3 -X-Λ 3 -Y) 3 (where X,Y = CH, N, P, As, Sb, Bi) by using the geometric,

The method depended on the following: when a mixture of AML (X) and OLM (Y) where the spectrum of (Y) was more extended (Fig. 4A), the determination of (X) could be done by

El poder, en Física, no es más que la capacidad de una potencia, de una medida de trabajo y energía, agotable, no infinitamente renovable.. Por lo tanto, una medida restringida

The molecular graph of NS 1 [n] has three similar branches with the same number x′ 23 of edges connecting a vertex of degree 2 with a vertex of degree 3.. Suppose y 23 is the

Key words: Christian philosophy, Catholicism, Protestantism, Orthodoxy, Russian Religious Philosophy, theology, unitotality, apophatics.. Vladimir

This article presents a modeling problem of stationarity as the property of chronological series using the stochastic equation of a chronological series and the stochastic equation