• Nu S-Au Găsit Rezultate

View of On the generalized sum of intervals

N/A
N/A
Protected

Academic year: 2022

Share "View of On the generalized sum of intervals"

Copied!
6
0
0

Text complet

(1)

REVUE D'ANALYSE NUMÉRIQUE

ET DE LA TIIÉORIE Dn rÁppRoxIMATIoN,

Tomc

3,

No

1,

1974, Pp,

ll-zl

ON THE GENERALIZED SUM OF INTERVALS

by

STEFAN N (cluj)

l.

Complex sum and generalized sum

of

intervals

In the

set

I of real

closed intervals

A : lar, ør], B : lbt br),

.

..

the

complex

sum (or simply:

sum)

of intervals [2] is

defined as

A + B : {u + alu e A &a t B} : lø, *

br,

ør*

brf.

11

ø, e R

(ø,

is a real

number)

then it is

customary

to

denot'e a',

- - lør,

a1], hence

R C I'

The

pair (H,

@) is ca11ed. a generøl,ized, sum

of intervals, if the

follo-

wing

cond.itions

are

satisfied :

SJ H is

a set of some ord.ered pairs of intervals'

Sr)

@

is a rule

which associates

with

each ord.ered

pait (A, B) = tI

an unique interval,

denoted bY

A

@ B.

Sa)

If (A, B) = H n

R'z

(i'e' A

anð'

B

are numbers anð'

(A' B) e H)'

then

A@ B: A +

B

We

can give

the following

examples.

1) If H:

I2 and the rule

is (A, B): fu ! alu e A &a e B),

then

we

have

the

complex

sum of

intervals.

(2)

THE GENERALIZED SUM OF INTERVALS 13

72 STEFAN N. BERTr

2) I,el à be the width of ,4

(i.e.

Ã: a,z- a').

11

hz ll2

an'd

H: {(A, B)

1.4

<

B}

then by the

rule

ø,B)-\W I

rve

have tl¡e

h-q,uas,isuøt,

of intervals [1]. The

Þ-quasisum

is

denoted

by A@hB,

3) If / : (Ír, Ír, Í", /r) is a

s¡zstem

of 4

real

'umbers, then for

H: {(A, B)lÃ(f, - /,) + Bu, - /,) <

0}

the

rule

(A, B) * lh I

b,

I ÃÍ, * Bfr,

o,

-f ó' * Ãf"'l

Bfo)

clefines

a

generalized st1m, clenotecl

hy A@¡B'

4) If u

and

u

are functions

of 4 real

arguments,

then

for

n : {(A, B)

| u(ar, Q.2, b1, br)

- u(øt,

a.t,

bt,

b')

a(ar,

ar, br,

br)

-

a(ar,

øt, bt,

bt))

the

rule

(A, B) - let l-

å,

* u(at, ør, br,

br)

-

w(ør,

ar, br,

br),

h I

br

l

a(ar, &2, by, br)

-

u(ør,

at, bt,

bt)l

clefines

a

generalized sum denotecl

b)' A

@,,,, B.

5)

For the generalized. sum we call give the

following

representation:

1et

a and p be

functions

of 4 reaT

arguments such

that rot

a.t, Ór

=

R

it

follows :

a(ø1,

ør, br,

br)

:

þ(at, a'1,

bt,

br)

: ørl bti

then

for

H: {(A, B)l

a(a.r,

ar, br,

br)

4

þ(øt, ør,

b',

br)}

we have the generalized sum given by the mapping

(A, B) ,-,

la(ø1,

6r, bt,

br), þ(at,

ør, br,

br))'

In the

present papef we shal1

give

sorne results about

the

sums 2),

3)

and. 4).

2. On thc

quasisums

of

intervals

In

connection

with

some interval- qamsioþerations:

if HcI3, f:ll+1, 2 rrn

Rs

the real

equation

f(A,.B, X X :'A f B, then the interval

solution

Í(A, B, X) : g(A, B, X) (A, B, X, = l)

is

called. quasisum.

It

is immediate

the

getetaTization

for a

quasioperation generated

by a

real

binary or

n-aÍy operation.

In the þaper [1] is

given the proof of

the

following theorem:

tnponirw-l . iti tu":1'-o I (å: l, 2, 3,

.

")

the-

møþs

d'etined' by

sr(A,

B) - A - B,

so(A,

B): A - (A - sr-'(/, B))(å:2,3,4' "')

ahereA

- B - {r -rlu e A &u e B\.

Th-e'interua'1,

equøtionto(\'4):

: B

høs a.n,inl,eiuø1,-solrttion

iJ

and,

onty'

i,f

A < B.

The sol'ul'ion

is

d,eno-

ted, by

A

@h

B

ønd,

is

equø|,

with

tke interuø|' 2 3

(ø, I ø, -l- ót * br)h - a'- b,

2h-t

A e)þB

-.--.

-l

a,

I \ +

bz)k

-

aÀ-

2h-l

This is q.n

interuø\, øl,so

for

rea.l,

h

genu.ølized'

qw,øsisim

A

@o

B (h,-q + B)

then

tke h-quøs,isum

is

tke c

we define for å

sums

A@rpB: (-oo, +oo)

anó'

AO- B : "fib'-!L'

where A @rpB is the

improper

interval

(the

set of real

numbers) and ,4

@* B is a real

number.

Èor the wid.th of quasisum we have the formula

B--A

2h-l

(3)

4 5 THE GENERALIZED Sulvl OF ]NTERVALS 15

74 $TEFAN N. BERTI

In

the case of complex operations the inclusions

ACC

and

BÇD

(denoted

(A,

B)

C(C,D)) imply that

AoBÇCoD,

i.e. the interval arithmetic is

inclusion neonotonic

l2].

For

the

quasioperations the

interval

arithmetic

is not

inclusion mono-

tonic. First

we give

the

following theorem'

THEoREM 2,.

çe, Ð Cç, D)

ønd'

à < E, e <D, then ue

can

giae tke Jol,touing þarørnetricøl' forn+s

for

tkese interuøl's :

A:

lar,

ql al, B: lbr,lbri

ø

+ bl,

C

: løt-(b-+cld')sr.2r*o.t +

+

c

I

d')(r

-

s)rl.

D:lbr-c,btlø*b+d),

where

&1,

bre

R, ø, b,

c,

d

e R+

(i.e. are positive numtrers) an!' 0

< s, I <

1.

eroo¡.

The

above parameirical

forms follow lot A, B

and'

C,

hence from

A < B

and

B QD.

From -4 CCitfollows:C:lør- x,atløly]

where

x, ye R+.

From

e < D

we have

the

inequations

x<b*c*d, Y<blcld-x,

which has the

solution

,:

(b

{cld)s, y:

(b

-l¿* d')(t-s)t

and the

theo

For the q ypot

ha¡re

THEoREM and'

raal,s

A @uB,

C @nD

exist, then

for "Í A, B,

C,

D

giuen

in

theorern

2, ue

høae

A

@e

" :lo i

øt

*

b,

+ #,

a'

+ at I h +#rl'

-sAfs)

This form of

quasisums

follows immediately from the

Theorem

I

THEoRÞM 4.

For

tke quasisurns giaen

in

theorem

3 ue

ha'ae:

A@nB:A+Beh:hr:!tb. - 2øIb

ønd'

B :ølb

Ã+E 2ølb

where O

< s'< I is

ørbitrøry.

The proof

is

immediately.

D alblc*d'

" c+n 2(ø¡b+a+d)-st(btald') alb*cld'

C@nD:C+D+k'-hz:

2(a

t

b

-l

a 1- d)

-

st(b

I

a

{

d)

We denote s

: I - s

a'nd'

t :

7

-

t.

Proof.

We have (for the

parametrical

forms given in

theorem 2)

Ã:ø, B-:ø+b,

e

:a'ibtcld'-st(b *c-l d)' D:alb!c{d',

therefore (theorem 1)

ftl-t-_

The theorem

is

proved.

TrrEoREM 5.

For the

quas'isums giaen

in

tkeorem

3 ae

ka'ue

(A

@u

B : A+ B

&

c @nD:c +

D)

' +ä : " b(alb*a+d)+a(otd') !\ølb +

a+d)

&h: atb 2ølb

The theorem

is

an immed.iately consequence of theorem 4.

THEOR_EM

6. The

quøsisums

A @nB ønd c @nD

øre comþtrex sums

for

ø common aa,lue

of h, if

and' onl'y

if

:î b(atb*cl-d) b(alb+a+d)+ø(c+d)

i,e.

for -ald)-b-d+

þ

+c+

d\(

(l -

s)rÞ

b(ø*btrc*.d\, b(a+b+c+d)+a(ald)s'

" - t(o+b+c+d,l

+

øþ¡

d.)s"

' b(ølb-l

a-ld)

|a(ctd,)

C@nD:lonø'I\*

h(b-ctd')

2k-l

-l

c )- (b

I

c

t

d')((t

-

s) th -sÞ

-

(1

-

s)l)

ø*hIb'l

2h-l

(4)

16 $TEFAN N' BERTI 6

For the following

theorem

we recall the

d.efinitions

of

some bìnaty

,"latîJÅ -ã-i

ti,".";"ú;"1.-;T I2;

see [1])

: for the intervars A and

B we have

A <

B

+

ø2

1br, A )

B

+

øv <bL

<

ø,

1br'

A

C

B

+

b'

1

ø'

1

ø2

1bz' A> B+ B 1A, Al B+ B )A, Al Bo B CA'

IHDoREM6.Ifp={(,},l,l,C'))then'inttrt'elcyþotkesisof

lheorerns

2

and'

3 it

fol'l'ous

(A

@oB)p(C @nD)

o l-b, o)

plkþ

-b -

d

+ qs'

i

a

-

4(1

- s)ll'

uhere

þ :

d

-

c

|

(b

+ t+

d)((1

-

s)'

- s)

ønd

I :

b

*

c

*

d'

Proof.

By

ad'dition

to the

endpoints

of the

intervals

[-ó, 0)

and' lhþ

-

b

-

d'

+

qs,

+

c

- q(l-

s)']

oftheconstantnumberk,b,next,bydivisionwiththepositivenumber

2k

- 1 and next ¡î-ä¿ãiti"" of ihe

constant number

I *-9t { ót

we

ããt"i" th"

""ãpãi"is'otJrtã

quasisums

A @nB

anð' C

@nD'The

theorem

is

proved.

IHEoRÐM

7.

With'

the

notøtions

of

tkeorern

6

we haae the fol'loaing equiualences :

A

@u

B;' c

@r D

+

<q(l -

s)t

-

b

-

c'

A@*Bl-C@nD+

q(t-s)t,-c iÎ

(1

--s)lf s.#*

oq(l-s)r-b-c<kþ< if (1-s)rfsrf-i.,

T 'rHE cENERALIzED suM oF INTERVALS t7

A@nB4C@eDo

A

@n

B I

C @nD

e

h'þ

>

b

+

d

-

qt'

We give only

th

ences relateð't'o

A 9., F l--9

9u

D' Th"

pioãls -

ot itre can

be made

similarly. We

have r i.,-r,rih"otem 6) :

,4 t-ó,01 l-

lhþ

-

b

-

d'

I

qs'

hþl

+*;l;(i''iít* --b <hþ l' - c(l -

s)ú

{

0

+

o q(l -

s),

-

b

-

c

t

<min

(e(t

- s)t-c, d-q.t) "

(q(1

-

s)l

-

ó

- -;'< < q(r -

s)

I -

c &

q(r -

s)ú

-

c

<

d

-

qs) V (g(1

-

s)t

-

b

- -

c

<

< d-

4s & d

-

qs

< q(l -

s)l

-

c)'

Since

q(l -

s)t

-

c

<

d

-qs e

(1

-

s),

+ t <ry.:L q btald'

and

q(r- s)r- c>d,- qsë(1 -s)rf s> #h

the

equivalence fo11orvs.

fn the

end

of ifrir

putograph we

give an

exarnple.

We

consider the iutervals

A : lør, ør* 31, B : lh *6, a, * 101,

c

: lør-2' øtl 4l' D:lh*5, qtlltu)

where

¿r € R

and. u

e

R+.

these

intervals satisfy the cond.itions of theorems

2

and.3

with the

Parameters

s

I

aL br a. b C d s t

a,r

at*6 l+u

u

o 1

I l*u 3lu l-Fu 3+u r+

d-qs In this way

we have

Ae)þB:

and

+

19)A

-

2ø'

-

l0

2h-r

(4ørf19)h-2a1-9

2h-l

(4at

A@nBcc @hD.*(1-s)rf

s

. #heq$ -

s)t

-

c

<

<

d

- q"

A

@nB)C @hD.'(1 -s)rl-s, # *&'d -

qs

t

< q(l -

s)t

-

c' (4øt I 18J_w)k-2ør- I-tt' (4o, 2h-l

l-18+u)h-2øt-

c@þB: 2h-l

2 - Rcvue d'analyse numérique et de la théorie de l'aPproximation' torne 3' no 1' 1974

(5)

I I

THE GENERALIZED SUM OF INTERVALS 19

1B STEFAN N. BERTI

For

the

the

following

comparison

of the

quasisums

A@hB

anð' C @o

D we

have

equivalences :

hence f.or

u :2.

'We have

the

complex sum

for the point

P

with u:2 A@þB{

c@o D

+u> 1 & h> h+

(u,h)

e D'

A@hBl

C@o D

+u> 1 & I <k' a-.+ (u'k) e D'

A@hBCC@o D+w> 1 & îtu (1e (u'k) eD"

4@uB]

C@e D

+u< 1 &

h

<7 + (u'k) e

Dn

A@þ Bl-

c@o D

eu< 1 & | <k a¿+(ø'h)eDu A@hBlc@¡ D+u<1& hr¿+@'h) =Dc' In the figure 1

are represented

the

domains

D' - D*

anð,

k: !

7

(Fig.

1.).

The

monotonic 1aw

valid for P (interval

arithmetic sum)

is

valid. also

in a

neighbourhood

of P, namely in

the

i.e.

complex

domain Dr.

3.

Some eonsiderations on

the

generalized surn ,4 @o B($ 1

;

3)

I1

Í : (lr, Ír, f",

Ín)

is

a system

of 4

real numbers,

then

for

H: {(/, B) lA(f, -,f,) + BU,- /,) <

0}

k

we define the generalized. sum

A

B

as

the

interval lør

l

b,

* ÃÍ,I BÍ",

ú,

i

b,

-l ÃÍ, -f Bf^l

D6 Dl TrrEoREM B.

For

the generølized, sutn

A

@r

B ue

høae one

of

the follo-

uing

3 formes:

+\\

.,{r

,

D5 D,

l) Í: (Ír, fr*8, f'+Í, Íù, B <4!;

c

2)

Í : U, * f,

.fr, .fr, .f,

* g), B > 4!;

3).f : (f', Í,, h+l, fr] g),

ö tl

7

D3

--¿P___

!

2

2 u uhere

fr,,f, = n

ønd

f, g e R+

øre

arbitrar

real, nunt'bers, The quasisuno

A

B

ha.s the

form 2),

nømely witlt'

Fig'l

Only

the

points of

the domain

u

> 0 * O' + defi

@u

if";1;; B and Ã

C

oJ 9, ã

O.

""a

C @È

D the

comPlex sum

for h,

iL:.

ft:.fz:

2h-1h-l ønd

f : s:;-,

1 (B

<Ã)

therefore

| +u

u

6+u A@hB:A@t h Þ-t h-t h \B

I 2h

-1'

2h=j' 2k

-r'

2n-tl

l+1t

4(3*u)

Ð"

3+u

(6)

20 $TEFAN

N. BERTI 10

of

11 THE GENERALIZED SUM OF ]NTERVALS 2L

the set of

elements

AB

where

A

is

unicuelv

d.etermincd,

but is

not

ichte'Präuss. Akad.

\Miss' Berlin ected

with inversability of

complex ervals)

is the

scope

of the

investi- sums and generally of the quasiop- Ptoof

. From the

conditi on

.4'(f1- /t) + B(f, - /t) < 0 holds

one

the

folloiving Possibilities :

I

Í"_ f,>o & ro-r,<o & B.n(!"-!',)'

Í,-Ín

Í"-l',<0 & Ín-f,>0 & B '++'

or r"-Ír>o & fn-r'>o

and

the

parametrical forms given

in

theorem

hold' An

immediately proof sives

thal

the quasisum has the form Z'

rHÊoREM

9. Ti,;';r;;;.t;;;'t-i** Àø, B

giaes ø qør,øsisutn

if

a'nd, only

if

fr- l":1,*fn:l

ønd'

Ã(f"-f) + BUo-lr) >

0'

tine þroof

is

verY simPle'

RDFERENCDS

[1] B et!i, S. N., Aritmeti'ca çi analizø interoalel'or' Rev' de anal' nu[r' 9i teot' apr' l' 1'

2t-39

(1e72).

[2]

Moor,

E.

RaÍl

on, Interual' analysis' Prentice-Hall series

in

automatic computa-

tion, 1966.

Receivetl 28. II. 19?3.

lttsl,itutul d,e ealcul ddn Clu'i aI Aca' dcmiei Reþubl'icii Socialisle Romd'nxa

4. An

example related

to the

gencralizeil sum

/

@¡,e

B (s1,

4)

¡I\he above sum

is not in the

present papef in general'

We give

only

the following

examPle,

If

u(ø7, ø2, br, br)

:

o't6z

* brb,

and

a(øt'

ø2' b1' b')

:

(øt

t

bt)(ø'

*

b')'

then

A

@rop B

is the

interval

lør* brl øú, *

brb,

- ø!-

b?'

ø'+

b''

* (ø'ib')(ø'lb') - (ø'+b')'l'

d.efined- for

Ãb,.+Bar<0.

5. A

historical remarh

Thecomplexsulnshavebeenconsidered(in'1895),bvl'"}.ROEBENIUS

(1g4g_1917) remarking that. for "ottit"".ìr

(subsêti.

of a

group) we

òan define Úr"

group'opeìation

; "u-"'ly if

Q[ and

!$ are

subsets ot

Referințe

DOCUMENTE SIMILARE

Moshe de Leon.(65) Therefore, in lieu of assuming that Jewish philosophy would, invariably, inhibit Jewish mysticism from using extreme expres- sions, there are examples of the

Toate acestea sunt doar o parte dintre avantajele in care cred partizanii clonarii. Pentru a si le sustine, ei recurg la o serie de argumente. Unul dintre ele are in atentie

2 Referring to the constitutional regulation of Kosovo regarding the form of state regulation, we have a unitary state, but in practice the unitary state

During the period 1992-2004, for criminal offenses with elements of abuse in the field of real estate turnover in Kosovo there were accused in total 35 persons and none

Abstract: The Canadian Immigration and Refugee Protection Act provides that one of the objectives of immigration is “to see that families are reunited in Canada.” The Act

, Convergence of the family of the deformed Euler-Halley iterations under the H¨ older condition of the second derivative, Journal of Computational and Applied Mathematics,

Keywords: trickster discourse, meaning, blasphemy, social change, transgression of social norms.. The Myth of the trickster and its

We then go on to examine a number of prototype techniques proposed for engineering agent systems, including methodologies for agent-oriented analysis and design, formal