MATI]trMATICA
_
REVUE D'ANALYSE NUMÉRIQUE ET DE TFIÉORIE Dtr L'APPROXIMATIONL'ANALYSE
NUMÉRIQUEET I,A TIIEORIE I}E
L'AI'PROXIN'IATION Tome9,
NoL,
1980, PP.36-&5
A BOOI]EAN METHOD IN BIVARIATE INTERPOI]ATION
by
F.J. DDÍ,VOS and
II.
POSDORF(Siegen, West Germany) (Bochum, West Gennany)
0.
IntroductionBoolean methods of nultivariate interpolation
rruefe introdu-ced in the
fund.amentalpapefs or con¡or¡ 14, 5]..It ¡/as
shownof
commutativeprojectors (in parti-
a
distributive lattice
each of 'whosearametric extensions
of
univariateii;ä #:!îI""å,1".'.,
J"","iÍ"ïå:Ti
"to
iog an va-n formula
havethe
same Boolean36 F. J, DELVOS and H. POSDORF
2 3 A BOOLEAN METHOD IN B1VARIÄTE INTERPOLATION 37
1.
The Biermann
projectorI,et
S:
La,b) x lø, ål
bea
square and.let B(S)
denote a sutspaceof the
spaceC(S) of
continuous functionson S,
F'urthermore, let{Ai 1<i<N}
Þ" ..set of N partial linear
operatorswhich
operate onf e B(S)
as afunction of ø
suchthat
Ai(f):ai(y) eB(s).
Similarly,
let{Ai:t'i<N}
be
a.set of N partial linear
operatorswhich
operate onf e B(S)
as afunction of y
suchthat
A:í(f):ai(x) =B(S).
Nor'v consider
the finite
sequenceof natural
numbers|<n,<nz<...
<and let
AL: {L;,'ir
<j < no}, | <
k,< K be a set of univariate
cardinalfunctions,
r,vith respect toi: {Aiil <i 3 n*}, | < h < I{,
1. e.
(1) A"(L;,"u):8;,r, l<i, j3no, l<h<I<.
Furthermote, we suppose
that
(2) (^i)c(Âi+r), l<h<K-1.
Similarly
letA"¡: {Li,"u:l
<j S nn\, 7 < h < K be a set of
u.nivariatecardinal functions with
respect toA'i:
{A,i:I < ,i 3 %*\, |
<l?,< K,
i.e.(3) Ai(Li,"o):8,.,r, 7 <i, j <no, I <
h,<K,
and suppose
that
(4) (^í)C(Âí+r), l<k<K-l'
Thus
we
can constructthe
set{PLu:l<h<K}
of parametric projectors o',n,t < k < K,
associatedwith the
setsÂi and Aí, I <
h'< K:
nþ
(5)
P',"u(f):DAi(f)Li,,[email protected]), t <k < K.
Similarly
we constructthe
set{P,u:1<k<K}
of parametric projectors pin, < h < K,
associatedwith the sets
Âíand Aí, I < h < K:
,þ
(6) Pi,þ(r):DAi(f)L'i,*o(v), 1 <h < K.
It follows from the relations (1), ..., (4) that the projectors P|o
anð'Oio, t < h < I(, are
absorPtive, i.e.Pi,Pi'¡ : P"¡PL,- PL;' | < i
<i < K' (7) P'i,P'i'¡:P'ljP'i'i- P'i't' | =i <j <K'
Finally
we assumethat the
setsAír, Aír
commuteon
B(S) :(B) AiAiU):AîA't(f), 1<i' j3nu' /eB(s)'
Thus
it
followsfrom (2), (4), (7), (7) that the projectors
P'n,," ', P''*,
Pi,,,
. ..,
P'|,r, commuteand
generatea distributive lattice (cf'
connoN[4j).
Special" elementsof this lattices are product projectors
PirP'1,¡,1 < i, j < K:
P'-,P'; j(f
) :
ä É,
Aí A':,( f ) Lí,,,(x) Lü,,, ¡(v) .obviously, the product projectors enjoy the following
interpolation properties :AíA'|,(PL P'Jj(.f))
: AiAhU)
(e)
\I <t I
%i,| 3l/rl 1 M¡, 7 < i, I
SK).5 A BOOLEAN METHOD IN BIVARIATE INTERPOLATION 39
.)Õ F, J. DELVOS and H, POSDORF 4
DEFTNTTToN
L
The generøIized..B'iermønnþrojector P* is
d.efined. astke Booleøtø sum
of
tke þrojectorsPL,Piu*r_,, 1 I r < K:
Px
:
Pi,nPi,K @ P:,^P';.o_, @., . O
pL,r_rp,i," @pi,rpí,.
(,Note
that the
RooleansúÍr of two
commuting projectorsA
andB
isdefined
by A
@B : A + B - AB).
. -The
generalized, Bierø,t,ønn þrojectorP*,is locally
møxírnø|, sittceit
is the
rnøximal elentent of tlte sublølt,ice generøted,byP',,,pI*¡r_,, l<
r<I{.
It
enjoysthe interpolation properties given in
rHÞoREM 7. þ-ov
/ e
B(S), thefunction
g: Poff)
interþol,øtesf in
the sense that
[email protected]):A'iAi lÐ,
(13'i,3n". I
=
j
=,/Tt<+t-,.
I <r sK).
Proof
.
Thelattice
theoretical constructionof
Po yieldsPL,Pirr*r-,P,r: PL,Pí^*r-,,1 < r < K.
Thus
the
interpolation propertiesof the
Boolean sumprojector P*
follow immediatelyfrom the
corresponding propertiesof the-product
prôjectors(see (e)).
Our
next
objective isto
d.erive anexplicit
expression of the projectorPrintermsof
sumsofproductprojectors PLrPi,r*r_,, 13r <
R.T,EMMA
l. For tke
generalized,Bierntann þrojector Pu thc
followingreþresentøtion
formulø is
aøl,id. :(10) o*:tî pL,+rp:,r-,Ð, or,
p,l,x-,Proof
. We will prove this
representationformula for K: 3.
The general casecan be proved by induction ("f.
DÐr,vos-posDoRF [3]).Pu:
P'*^P'i,"@ P:,,P'i,@PL"Pi,,:
: (Pi,,Pi,"+ P;,P'i,,-
P',,,Pi,,) @P',,P|,:
:P;,P'ir" +
Pi,,Pi,,-
P;,,Pi,+
P:," P'r:,,-
P',,,Lt'/,,-
P",,P'1,,+ P;,Pi,, : : P;,P'1"+
P:,"P',i" 1-P:"P';,- P;,Pí, -
P;,P'i',THEoREM
2. Let.f =
B(S), then the general'ized' Biermønn 'ínterþolatntP*ff)
off
has the following reþresentat'ion(no:0):
.Il-s s krll
"K-t
(11) P*(fl(x,y) :ÐD D Ð AiAiU)Lri(x,y),
r0 r=0 i:ttr1_l j =nyç_1_s*1
uhere L¿,¡(x,
y)
d'enotethe
cørd:ina.l,functians aitlo resþect oJ Ai
,4j¡(n, J-lli 1n,+r, /tK-r-.s+ 1s j 3ro-",0 <r < s < K- 1)
giaenby(r2)
L;,¡(x,o) :ÐLl,,,[email protected])L'i,,*-¡b) -,i, r',,,,,(x)Li,,*-,(!).
Proof. Taking into accoünt (5) and
(6)the
representation formula (10) yieldsR-l nt+l "R-t
p,(Í)(*,r) :Ð Ð Ð oiAiu)Li,,+,1x)Li,"*-,(!)-
K-l fr, nK-,
-D D D uAiff)L:,",1x)L!,,,*-,(!).
/:1 i:1 j:l
Thus
rve obtainK-l nr-Fl K-l n(-s (" \
p*(Í)(*,y):D
t:0 i:t\llD D D
s:/ i:,tff-l-s+l,Aia:;(f)lÐri,",*,(*)Li,.*-,U)l-
\r:/ )- iì ,:þ,*,Ð ,:;Ð; ,*'AiA';(Í)(þ''""o' r;"'*-lv)):
K- l nt*l K-l nr-s / s \
: Ð
t:0 i:n +l s:t j:l¡<-l -s+1. D. D D ,, AiAí(f)lÐti,",,,(x)
\¿:tLi,'*-,{r)J -
K-2 nttt K-l nr-s / s \
-D D D D AíAí(f)1.D.ri,,,1*)L'i,,*-,g)l:
7O ¿-or+t t:-r-¡1 ¡:rrrj-"+t \':/+l I
- il s b-]
,:*Þ' *,AiAi(fl lÐri,,,,*,(*) Li,,*-,(y) -
- /-r ¿-r I
t:O i-n¡+,l 5:7 ¡:r¡ç_1-"{1
- ,å,
L't,,,(x)L'i,.*-,(y)
s-0 /:0
DD ,"Ë.,,_._Þ' _,
AiAi 0
{Ð rr,,,,., çx)L,i,,*_,u) -
i-nrll i-nç-t-s*l
- s' r| tfl
, -''n t(x)t;"'*'t u)
ìl'
I(-l s
40 F, J. DELVOS and H. POSDORF
o 7 A BOOLEÄN METIIOD IN BIVARIATE INTERPOLATION 41
IÍ: n,:2r.In this
case we haveN :2K. An
applicationof
Theo-rern
2
yields:Thus the equalities (r1)
.and.(r2)
greverified. we
now merely haveto
provethat the Lr!(1:1r)
givenià lizt are the d"sit"¿
"ärdinal
functions.Theorem 1
yields
forf =
B(S)_AiAiff):AiAiP"ffi); (1 < i <?t,,, |
=
j <?tx+t_,,t <r <I{).
I,et
y). - Li,[email protected]) Lí,,.*(y),
r< /t, r 3
nu.Then
Ã, AiA'i (i):à¿,¿87,r,(1 < o.r,, l <l<ftK+t-,, | <r <K).
I nus
Pt U) :
Ln,trvhich implies
A:
Ai
@k,ù:
AíAi e* (ñ) : Ai
A,;(,i):
8¿,¿ 8,;¿.this
provesour
theorem.We
considetr.oy in
greater detail the_two cases. nt: /
â"ttd, %,:2r.
. .!, n,: r,In this
casõ we haveN:1(. ei, ãïpii"rtion
ot Theorem 2 yields :Pr(f)(*,r) :
Þ^ È or*,
Aío-, (f)L,+t,w-,(x, y),s:0 /:0
with
s
Lr+t,N-s (*,
y) :Ðtl*r,;+t
(x)L'io-,,*-, (y)- ,ù
i:t1-l.ri*r,r(*)Lk-,,w-¿(y).
Note
that
the well known bivariateTaylor formula
andthe
Biermann form.ula.^
(sraNcu [B]) are
ortainea-ny ;p;"irli;'i'ö tîe
operators and cardinalfunctions
ãs-follows :(i) Taylor formula:
Aiff): D',-'[email protected]',ù, A'i(Í): Di-r.f(x, yo), 1 < i < N.
Lí,n(x):(x- xòi-' l(i _ t)
!L'í,n(y):(y- !òi-'lU - \ ! (l'i<
h',l 'å'N).
(ii)
Biermann formula:¿i(f):Í(x¡, j), Ai (Í):.f(x, y,), 1 < i <
N.L|u (x)
: n
O-
x¡) I @¡-
x¡)i+i
L(,n (y)
: \
ro-y¡)lU¿-y¡) withxr1x21...<
J+¿(l<i<h, l<,å<N)
\ _/1V
I(-1 s 2/+2
Po([email protected],y):
,4 Ð ,F*
:2(K-s) -D
IA|
A',j (Í)L;,¡(*,
y),2K -2s (13)
with
tj
s
(14)
L,,¡ (x,ù :ÐL'¡,"u+rt
@)Li,z¡r-ub)-,Ð,
Li,2¡ (x)Li,21v-n U),From
(13)the
folloi,vingformula can
easilybe
derived:(15) pou)@,r, :
Þ. D,^{our*uA'íto,¡(Í)L,r,+u,z1x-¡
(x,v) ¡
I ALv+.,tA'í6-,t-rU)
Ltv+r1,2(K-s)-r(*' y) + -l
AL,+,A'íø-¡(Í)Lt +r,ztx_¡(x,
Y)¡ -f
AL,+tA'lw-,\-, (f)Lr,+t,tt*-¡_, (x, !)\' we will now apply this formula to
reducedHermite
interpolation schemesof type II
þ?oposed.by r6r,r<Es [6]'
F'orthis
purposelet (S:
: [0, 1] x [0,
1]) :AL¿-r(f): D';1Í(0, !), AL¡(Í): D';'Í(1,
Y)Aï¡-,(f): n,Í(x,0), Ai,ff): Di-, fl(*, t) 0< í<K)'
the
corresponding cardinalfunctions
are(16)
LL¡-,,"u @): #,0 - *)o(ã(t- :-') t)
(17)
I-î¡,rn (x): (- l)i-t ¡'
-',"0(l -
x)'The
functionsL'í:t,"n (y)
andL'í¡,*(y)
are d.efined analogously.F;; th" á;ii"otiä"'äf ihc
cardiäaf iunctions see pHrrrrrrps [7.]).F'rom
(14),
' '.,
(17) we now obtain the following1HE9REM
3.
The reþresentation forntul,afor
the red'uced' Herm'ite inter-þolant P"(f)
off ís
gíuen bY :K-l s
P
u(fl @,y): Ð
Ð, ^ {D;Di
-t -""/ ( 1, 1 ) (-
t ¡r-
t-' !'
L z, + t,,to -o - r ( 1- *'l -
y)+
!
Dr,Drc-r-y(1,0)(-l)
L",+r21n-"¡-r(1- x, y) + I D,nDx-t-y(0, 1)(-1¡o-t-"r2t*t,z(r-s)-t(*, l- y) + I Dr*Dx-r-y(O,
0)L",+t,r(*-")-t(*, y)\,
l< j<h, 1<h.sI{)
42 F. J. DELVOS ônd t{. POSDORF
B
I
A BOOLEAN METIIOD IN BIVARIATE INTERPOLATION 43witlt
An
applicationof
Lemma2 to
reducedHermite interpolation
yields THEoREM4.
Let/ =
B(S):C2K+2(S),S: [0, 1] x [0, 1]'
Then tloeremøind,ev
P*(Í)
o"f tlte reduced' Herm'ite 'interþolantP"(f) is
g'iuen by"
Eu)@, ,lJW
o?," "f(*,
vo)r
s
Lr,) r,"(,, ,¡-r(ø,
y) :
Ð
LL.t.t,zQ+tt(x)L'ír,r-'¡
r,rto_nU)- -,Ð,
LL, +r,u(x) Lís, _,t _ r,rv, _rt(r)2.
Rcrnaindel r,cpresentation,rn this
sectiolr wewill
derive are'rainder
represe'tationformula
for gerreralized Bicrmann projectorp,,
anð.apply
thisiã'n'iãïo
,"ao"ed Her-urite
interpolation.From
Lernma 1wc
obtain thefollolvirg
reprcsentation formula ofp*:
(18) P'. :
å
(PL,*,-
pi,,) p1,,,-,with Pi,"- P'i,,:0
andP',,rr,_r:1
wher.e0
denotesthe
zero_projector andI
denotesthe
identity-projector.This
leads us to+l ffi
DTD"rrc-'tr(x,,!x-)+a#D',*Í@o'v) -
fi|
,,*1(*-
1)/+t yK-t(y- 1)*-' - )
:-
Pz(t+tl D1,""'
-f(i,*l, yK-/)' H,,
Q?*
t))t(z(K-
r))lProof
.
Usingthe elror
estimatesof univariate Hermite
interpolation(cf. oavis t2l) the
theoremis
proved' bvK-l K-1
4: P'í*+ D FÇHw-¡-l-PrK- l, PbvltP'í6-'','
t:l r:O
which is
an immediate conseqllenceof
Lemma 2.TiÐI,rr,rA
2. For
th,e retnø,inderuing
reþresentøt,ionfonnulø
'is uþ_rojector o.fPr,
d.enoted.by P*,
ttte fotlo-ctl,id, :
LI< 1)
-
K I(_l
Ðo1,o,,,_, - Ð p;,*rr,;o_, 3.
Concluding remarhsIn
a recentpapef
ryATKINS and LaNCaSrnn [9]. extend-ed the methodof
red.ucedlteimite interpolation to fill up cerlain
gapsin the finite
element construction of recfangular elements'It
is thetopic of a
forthco-min
he e-íements ofthis
extended Melkesfamily
canbe
etalizedBiermann interpolation' fn
particularthis icit
constructionof the
corresponding cardinal functions.by
proof. Taki'g into
accountthe formula
(18)th.r
lemmais
provedä,o;*, -
P;,) Pü,,-,* ho,,, Pio-, Ð4'*,F'|',,-,:
K K
:Ðe,,*, -
PL,)Px,r_,+Ð(v,"- H,,*r) P'l,u_,:
APPENDIX
: \
{Pi,,r, -
P',,,) P'1, r,-, + D
K { e i,,*, -
P'n,) Pi, *-, : As an
instance we presentthe
interinterpolation lor K :2,
multiple
node consisting oup to
and includingft.
Wfunctional A'tA'i,0 : Í(0,
: Ð(P:,,+, --
PL,): r
44 F, J. DELVOS and lJ. POSDORF
10 1t A BOOLEAN METT{OD ]N BIVARTATE INTERPOLATION 45
K-2
tll Biermann, O., Über näherungsaeise Kwbøluren. REFERENCES i:[/.orats1n. math. Phys. lLt 271-225( 1e03).
l2lDavis, Pl., J., Interþolation and Aþþroxitnøtioø.Blaisdell Publishing Company, [on- don (1963).
[3] Delvos, F.J., Posdo¡f, Ir,, N-th ord'er blending. In: ,,Constructive Theory of Func- tions of Several Va¡iables". Ecls. : W. Schempp, K. Zeller. Irecture Notes in Mathematics, 671, 53-64 (1577).
[4] G o r d o n, W.J., Distributiae Lattices and the Aþþroxirnation of Mul'tiuøriate Functions.
Proc. Symp. Approximation with Special Emphasis on Spline Functions, (Madison, Wisc. 1969). Ed. : I.J. Schoenberg. Acaclemic Press, New-York, 1969,
pp.223-277.
tsl Gorclon, W. J., Blend,ing-Function Methods of Bi.uariate ønd Multiuariate Inlerþolation a.nd' Aþþrotrimøtion. SIAI|/,, J. Num. Anal., Vol. B, No' 1, 158-177 (1971)' [6] Melkes, F., Red,uced, Pieceuise Biuaviate Hermite Interþolation. Num. Math. l9' 326-
-s40 (1s72).
t7l P h i 11i p s, G. M., Exþli'cit Forms for Cerlain Hermi'le Aþþroximations. BIT 13, 177 -180
(1s73).
tB]
Stancu,
D. D., Theyemøind,er of certøinlinear øþþroximationformuløsin twoua,r¿o,bles.SIA1\[, J. Num. Anal., Ser. B 1, 137-163 (1964).
[9]
Watkins,
D. S.,I,anc aster,
P', Sovne Farnil'iesof
Finite Elemenls. J. Inst.lVlaths Applics 19, 385-397 (1977).
Received 16, II. 1979.
K-l
Dr.
!'.
J. DETTVOSLehvslukl,
fitr
Matherrxa,t'ihI
Uniuersity of Siegen
Höld.erlirstr. 3
D-5900 Siegen 21
West Germany
Dr.
II.
POSDORFReohenzentrum Uniuersity of Bochum Universitätsstr. 150
D-4630 Bochum West Getmany
K-_4
Fig. 1