• Nu S-Au Găsit Rezultate

View of A boolean method in bivariate interpolation

N/A
N/A
Protected

Academic year: 2022

Share "View of A boolean method in bivariate interpolation"

Copied!
6
0
0

Text complet

(1)

MATI]trMATICA

_

REVUE D'ANALYSE NUMÉRIQUE ET DE TFIÉORIE Dtr L'APPROXIMATION

L'ANALYSE

NUMÉRIQUE

ET I,A TIIEORIE I}E

L'AI'PROXIN'IATION Tome

9,

No

L,

1980, PP.

36-&5

A BOOI]EAN METHOD IN BIVARIATE INTERPOI]ATION

by

F.J. DDÍ,VOS and

II.

POSDORF

(Siegen, West Germany) (Bochum, West Gennany)

0.

Introduction

Boolean methods of nultivariate interpolation

rruefe introdu-

ced in the

fund.amental

papefs or con¡or¡ 14, 5]..It ¡/as

shown

of

commutative

projectors (in parti-

a

distributive lattice

each of 'whose

arametric extensions

of

univariate

ii;ä #:!îI""å,1".'.,

J"","i

Í"ïå:Ti

"

to

iog an va-

n formula

have

the

same Boolean

(2)

36 F. J, DELVOS and H. POSDORF

2 3 A BOOLEAN METHOD IN B1VARIÄTE INTERPOLATION 37

1.

The Biermann

projector

I,et

S

:

La,

b) x lø, ål

be

a

square and.

let B(S)

denote a sutspace

of the

space

C(S) of

continuous functions

on S,

F'urthermore, let

{Ai 1<i<N}

Þ" ..set of N partial linear

operators

which

operate on

f e B(S)

as a

function of ø

such

that

Ai(f):ai(y) eB(s).

Similarly,

let

{Ai:t'i<N}

be

a

.set of N partial linear

operators

which

operate on

f e B(S)

as a

function of y

such

that

A:í(f):ai(x) =B(S).

Nor'v consider

the finite

sequence

of natural

numbers

|<n,<nz<...

<

and let

AL: {L;,'ir

<

j < no}, | <

k,

< K be a set of univariate

cardinal

functions,

r,vith respect to

i: {Aiil <i 3 n*}, | < h < I{,

1. e.

(1) A"(L;,"u):8;,r, l<i, j3no, l<h<I<.

Furthermote, we suppose

that

(2) (^i)c(Âi+r), l<h<K-1.

Similarly

let

A"¡: {Li,"u:l

<

j S nn\, 7 < h < K be a set of

u.nivariate

cardinal functions with

respect to

A'i:

{A,i

:I < ,i 3 %*\, |

<l?,

< K,

i.e.

(3) Ai(Li,"o):8,.,r, 7 <i, j <no, I <

h,

<K,

and suppose

that

(4) (^í)C(Âí+r), l<k<K-l'

Thus

we

can construct

the

set

{PLu:l<h<K}

of parametric projectors o',n,t < k < K,

associated

with the

sets

Âi and Aí, I <

h'

< K:

(5)

P',"u(f)

:DAi(f)Li,,u@), t <k < K.

Similarly

we construct

the

set

{P,u:1<k<K}

of parametric projectors pin, < h < K,

associated

with the sets

Âí

and Aí, I < h < K:

(6) Pi,þ(r):DAi(f)L'i,*o(v), 1 <h < K.

It follows from the relations (1), ..., (4) that the projectors P|o

anð'

Oio, t < h < I(, are

absorPtive, i.e.

Pi,Pi'¡ : P"¡PL,- PL;' | < i

<

i < K' (7) P'i,P'i'¡:P'ljP'i'i- P'i't' | =i <j <K'

Finally

we assume

that the

sets

Aír, Aír

commute

on

B(S) :

(B) AiAiU):AîA't(f), 1<i' j3nu' /eB(s)'

Thus

it

follows

from (2), (4), (7), (7) that the projectors

P'n,,

" ', P''*,

Pi,,,

. .

.,

P'|,r, commute

and

generate

a distributive lattice (cf'

connoN

[4j).

Special" elements

of this lattices are product projectors

PirP'1,¡,

1 < i, j < K:

P'-,P'; j(f

) :

ä É,

A':,( f ) Lí,,,(x) Lü,,, ¡(v) .

obviously, the product projectors enjoy the following

interpolation properties :

AíA'|,(PL P'Jj(.f))

: AiAhU)

(e)

\I <t I

%i,

| 3l/rl 1 M¡, 7 < i, I

SK).

(3)

5 A BOOLEAN METHOD IN BIVARIATE INTERPOLATION 39

.)Õ F, J. DELVOS and H, POSDORF 4

DEFTNTTToN

L

The generøIized..B'iermønn

þrojector P* is

d.efined. as

tke Booleøtø sum

of

tke þrojectors

PL,Piu*r_,, 1 I r < K:

Px

:

Pi,nPi,K @ P:,^P';.o_, @

., . O

pL,r_rp,i," @

pi,rpí,.

(,Note

that the

Roolean

súÍr of two

commuting projectors

A

and

B

is

defined

by A

@

B : A + B - AB).

. -The

generalized, Bierø,t,ønn þrojector

P*,is locally

møxírnø|, sittce

it

is the

rnøximal elentent of tlte sublølt,ice generøted,by

P',,,pI*¡r_,, l<

r

<I{.

It

enjoys

the interpolation properties given in

rHÞoREM 7. þ-ov

/ e

B(S), the

function

g

: Poff)

interþol,øtes

f in

the sense that

AiAi@):A'iAi lÐ,

(1

3'i,3n". I

=

j

=,/Tt<+t-,.

I <r sK).

Proof

.

The

lattice

theoretical construction

of

Po yields

PL,Pirr*r-,P,r: PL,Pí^*r-,,1 < r < K.

Thus

the

interpolation properties

of the

Boolean sum

projector P*

follow immediately

from the

corresponding properties

of the-product

prôjectors

(see (e)).

Our

next

objective is

to

d.erive an

explicit

expression of the projector

Printermsof

sumsof

productprojectors PLrPi,r*r_,, 13r <

R.

T,EMMA

l. For tke

generalized,

Bierntann þrojector Pu thc

following

reþresentøtion

formulø is

aøl,id. :

(10) o*:tî pL,+rp:,r-,Ð, or,

p,l,x-,

Proof

. We will prove this

representation

formula for K: 3.

The general case

can be proved by induction ("f.

DÐr,vos-posDoRF [3]).

Pu:

P'*^P'i,"@ P:,,P'i,@

PL"Pi,,:

: (Pi,,Pi,"+ P;,P'i,,-

P',,,Pi,,) @

P',,P|,:

:P;,P'ir" +

Pi,,Pi,,

-

P;,,

Pi,+

P:," P'r:,,

-

P',,,Lt'/,,

-

P",,P'1,,

+ P;,Pi,, : : P;,P'1"+

P:,"P',i" 1-

P:"P';,- P;,Pí, -

P;,P'i',

THEoREM

2. Let.f =

B(S), then the general'ized' Biermønn 'ínterþolatnt

P*ff)

of

f

has the following reþresentat'ion

(no:0):

.Il-s s krll

"K-t

(11) P*(fl(x,y) :ÐD D Ð AiAiU)Lri(x,y),

r0 r=0 i:ttr1_l j =nyç_1_s*1

uhere L¿,¡(x,

y)

d'enote

the

cørd:ina.l,

functians aitlo resþect oJ Ai

,4j¡

(n, J-lli 1n,+r, /tK-r-.s+ 1s j 3ro-",0 <r < s < K- 1)

giaenby

(r2)

L;,¡(x,

o) :ÐLl,,,nr@)L'i,,*-¡b) -,i, r',,,,,(x)Li,,*-,(!).

Proof. Taking into accoünt (5) and

(6)

the

representation formula (10) yields

R-l nt+l "R-t

p,(Í)(*,r) :Ð Ð Ð oiAiu)Li,,+,1x)Li,"*-,(!)-

K-l fr, nK-,

-D D D uAiff)L:,",1x)L!,,,*-,(!).

/:1 i:1 j:l

Thus

rve obtain

K-l nr-Fl K-l n(-s (" \

p*(Í)(*,y):D

t:0 i:t\ll

D D D

s:/ i:,tff-l-s+l

,Aia:;(f)lÐri,",*,(*)Li,.*-,U)l-

\r:/ )

- iì ,:þ,*,Ð ,:;Ð; ,*'AiA';(Í)(þ''""o' r;"'*-lv)):

K- l nt*l K-l nr-s / s \

: Ð

t:0 i:n +l s:t j:l¡<-l -s+1

. D. D D ,, AiAí(f)lÐti,",,,(x)

\¿:t

Li,'*-,{r)J -

K-2 nttt K-l nr-s / s \

-D D D D AíAí(f)1.D.ri,,,1*)L'i,,*-,g)l:

7O ¿-or+t t:-r-¡1 ¡:rrrj-"+t \':/+l I

- il s b-]

,:*Þ' *,AiAi(fl lÐri,,,,*,(*) Li,,*-,(y) -

- /-r ¿-r I

t:O i-n¡+,l 5:7 ¡:r¡ç_1-"{1

- ,å,

L't,,,(x)

L'i,.*-,(y)

s-0 /:0

DD ,"Ë.,,_._Þ' _,

Ai

Ai 0

{Ð rr,,,,., çx)L,i,,*_,u) -

i-nrll i-nç-t-s*l

- s' r| tfl

, -''n t(x)

t;"'*'t u)

ì

l'

I(-l s

(4)

40 F, J. DELVOS and H. POSDORF

o 7 A BOOLEÄN METIIOD IN BIVARIATE INTERPOLATION 41

IÍ: n,:2r.In this

case we have

N :2K. An

application

of

Theo-

rern

2

yields:

Thus the equalities (r1)

.and

.(r2)

gre

verified. we

now merely have

to

prove

that the Lr!(1:1r)

given

ià lizt are the d"sit"¿

"ärdinal

functions.

Theorem 1

yields

for

f =

B(S)

_AiAiff):AiAiP"ffi); (1 < i <?t,,, |

=

j <?tx+t_,,t <r <I{).

I,et

7@,

y). - Li,x@) Lí,,.*(y),

r

< /t, r 3

nu.

Then

Ã, AiA'i (i):à¿,¿87,r,(1 < o.r,, l <l<ftK+t-,, | <r <K).

I nus

Pt U) :

Ln,t

rvhich implies

A:

Ai

@k,ù

:

Ai e* (ñ) : Ai

A,;(,i)

:

8¿,¿ 8,;¿.

this

proves

our

theorem.

We

considet

r.oy in

greater detail the_two cases. nt

: /

â"ttd, %,

:2r.

. .!, n,: r,In this

casõ we have

N:1(. ei, ãïpii"rtion

ot Theorem 2 yields :

Pr(f)(*,r) :

Þ^ È or*,

Aío-, (f)L,+t,w-,(x, y),

s:0 /:0

with

s

Lr+t,N-s (*,

y) :Ðtl*r,;+t

(x)L'io-,,*-, (y)

- ,ù

i:t1-l

.ri*r,r(*)Lk-,,w-¿(y).

Note

that

the well known bivariate

Taylor formula

and

the

Biermann form.ula.

^

(sraNcu [B]) are

ortainea

-ny ;p;"irli;'i'ö tîe

operators and cardinal

functions

ãs-follows :

(i) Taylor formula:

Aiff): D',-'f@',ù, A'i(Í): Di-r.f(x, yo), 1 < i < N.

Lí,n(x):(x- xòi-' l(i _ t)

!

L'í,n(y):(y- !òi-'lU - \ ! (l'i<

h',

l 'å'N).

(ii)

Biermann formula:

¿i(f):Í(x¡, j), Ai (Í):.f(x, y,), 1 < i <

N.

L|u (x)

: n

O

-

x¡) I

-

x¡)

i+i

L(,n (y)

: \

ro

-y¡)lU¿-y¡) withxr1x21...<

J+¿

(l<i<h, l<,å<N)

\ _/1V

I(-1 s 2/+2

Po(fl@,y):

,4 Ð ,F*

:2(K-s) -

D

I

A|

A',j (Í)L;,¡

(*,

y),

2K -2s (13)

with

tj

s

(14)

L,,¡ (x,

ù :ÐL'¡,"u+rt

@)Li,z¡r-ub)

-,Ð,

Li,2¡ (x)Li,21v-n U),

From

(13)

the

folloi,ving

formula can

easily

be

derived:

(15) pou)@,r, :

Þ. D,^{our*uA'íto,¡(Í)L,r,+u,z1x-¡

(x,

v) ¡

I ALv+.,tA'í6-,t-rU)

Ltv+r1,2(K-s)-r

(*' y) + -l

AL,+,

A'íø-¡(Í)Lt +r,ztx_¡(x,

Y)

¡ -f

AL,+t

A'lw-,\-, (f)Lr,+t,tt*-¡_, (x, !)\' we will now apply this formula to

reduced

Hermite

interpolation schemes

of type II

þ?oposed.

by r6r,r<Es [6]'

F'or

this

purpose

let (S:

: [0, 1] x [0,

1]) :

AL¿-r(f): D';1Í(0, !), AL¡(Í): D';'Í(1,

Y)

Aï¡-,(f): n,Í(x,0), Ai,ff): Di-, fl(*, t) 0< í<K)'

the

corresponding cardinal

functions

are

(16)

LL¡-,,"u @)

: #,0 - *)o(ã(t- :-') t)

(17)

I-î¡,rn (x)

: (- l)i-t ¡'

-',"0

(l -

x)'

The

functions

L'í:t,"n (y)

and

L'í¡,*(y)

are d.efined analogously.

F;; th" á;ii"otiä"'äf ihc

cardiäaf iunctions see pHrrrrrrps [7.]).

F'rom

(14),

' '

.,

(17) we now obtain the following

1HE9REM

3.

The reþresentation forntul,a

for

the red'uced' Herm'ite inter-

þolant P"(f)

of

f ís

gíuen bY :

K-l s

P

u(fl @,y): Ð

Ð, ^ {D

;Di

-t -""/ ( 1, 1 ) (

-

t ¡

r-

t

-' !'

L z, + t,,to -o - r ( 1

- *'l -

y)

+

!

Dr,Drc-r-y(1,

0)(-l)

L",+r21n-"¡-r(1

- x, y) + I D,nDx-t-y(0, 1)(-1¡o-t-"r2t*t,z(r-s)-t(*, l- y) + I Dr*Dx-r-y(O,

0)

L",+t,r(*-")-t(*, y)\,

l< j<h, 1<h.sI{)

(5)

42 F. J. DELVOS ônd t{. POSDORF

B

I

A BOOLEAN METIIOD IN BIVARIATE INTERPOLATION 43

witlt

An

application

of

Lemma

2 to

reduced

Hermite interpolation

yields THEoREM

4.

Let

/ =

B(S):C2K+2(S),

S: [0, 1] x [0, 1]'

Then tloe

remøind,ev

P*(Í)

o"f tlte reduced' Herm'ite 'interþolant

P"(f) is

g'iuen by

"

Eu)@, ,lJW

o?," "f

(*,

vo)

r

s

Lr,) r,"(,, ,¡-r(ø,

y) :

Ð

LL.t.t,zQ+tt(x)

L'ír,r-'¡

r,rto_nU)

- -,Ð,

LL, +r,u(x) Lís, _,t _ r,rv, _rt(r)

2.

Rcrnaindel r,cpresentation,

rn this

sectiolr we

will

derive a

re'rainder

represe'tation

formula

for gerreralized Bicrmann projector

p,,

anð.

apply

this

iã'n'iãïo

,"ao"ed Her-

urite

interpolation.

From

Lernma 1

wc

obtain the

follolvirg

reprcsentation formula of

p*:

(18) P'. :

å

(PL,*,

-

pi,,) p1,,,-,

with Pi,"- P'i,,:0

and

P',,rr,_r:1

wher.e

0

denotes

the

zero_projector and

I

denotes

the

identity-projector.

This

leads us to

+l ffi

DTD"rrc-'tr(x,,

!x-)+a#D',*Í@o'v) -

fi|

,,*1(*

-

1)/+t yK-t(y

- 1)*-' - )

:

-

Pz(t+tl D1,""'

-f(i,*l, yK-/)' H,,

Q?

*

t))t(z(K

-

r))l

Proof

.

Using

the elror

estimates

of univariate Hermite

interpolation

(cf. oavis t2l) the

theorem

is

proved' bv

K-l K-1

4: P'í*+ D FÇHw-¡-l-PrK- l, PbvltP'í6-'','

t:l r:O

which is

an immediate conseqllence

of

Lemma 2.

TiÐI,rr,rA

2. For

th,e retnø,inder

uing

reþresentøt,ion

fonnulø

'is uþ_rojector o.f

Pr,

d.enoted.

by P*,

ttte fotlo-

ctl,id, :

LI< 1)

-

K I(_l

Ðo1,o,,,_, - Ð p;,*rr,;o_, 3.

Concluding remarhs

In

a recent

papef

ryATKINS and LaNCaSrnn [9]. extend-ed the method

of

red.uced

lteimite interpolation to fill up cerlain

gaps

in the finite

element construction of recfangular elements'

It

is the

topic of a

forthco-

min

he e-íements of

this

extended Melkes

family

can

be

etalized

Biermann interpolation' fn

particular

this icit

construction

of the

corresponding cardinal functions.

by

proof. Taki'g into

account

the formula

(18)

th.r

lemma

is

proved

ä,o;*, -

P;,) Pü,,-,

* ho,,, Pio-, Ð4'*,F'|',,-,:

K K

:Ðe,,*, -

PL,)

Px,r_,+Ð(v,"- H,,*r) P'l,u_,:

APPENDIX

: \

{Pi,,

r, -

P',,,) P'1, r,

-, + D

K { e i,,

*, -

P'n,) Pi, *

-, : As an

instance we present

the

inter

interpolation lor K :2,

multiple

node consisting o

up to

and including

ft.

W

functional A'tA'i,0 : Í(0,

: Ð(P:,,+, --

PL,)

: r

(6)

44 F, J. DELVOS and lJ. POSDORF

10 1t A BOOLEAN METT{OD ]N BIVARTATE INTERPOLATION 45

K-2

tll Biermann, O., Über näherungsaeise Kwbøluren. REFERENCES i:[/.orats1n. math. Phys. lLt 271-225

( 1e03).

l2lDavis, Pl., J., Interþolation and Aþþroxitnøtioø.Blaisdell Publishing Company, [on- don (1963).

[3] Delvos, F.J., Posdo¡f, Ir,, N-th ord'er blending. In: ,,Constructive Theory of Func- tions of Several Va¡iables". Ecls. : W. Schempp, K. Zeller. Irecture Notes in Mathematics, 671, 53-64 (1577).

[4] G o r d o n, W.J., Distributiae Lattices and the Aþþroxirnation of Mul'tiuøriate Functions.

Proc. Symp. Approximation with Special Emphasis on Spline Functions, (Madison, Wisc. 1969). Ed. : I.J. Schoenberg. Acaclemic Press, New-York, 1969,

pp.223-277.

tsl Gorclon, W. J., Blend,ing-Function Methods of Bi.uariate ønd Multiuariate Inlerþolation a.nd' Aþþrotrimøtion. SIAI|/,, J. Num. Anal., Vol. B, No' 1, 158-177 (1971)' [6] Melkes, F., Red,uced, Pieceuise Biuaviate Hermite Interþolation. Num. Math. l9' 326-

-s40 (1s72).

t7l P h i 11i p s, G. M., Exþli'cit Forms for Cerlain Hermi'le Aþþroximations. BIT 13, 177 -180

(1s73).

tB]

Stancu,

D. D., Theyemøind,er of certøinlinear øþþroximationformuløsin twoua,r¿o,bles.

SIA1\[, J. Num. Anal., Ser. B 1, 137-163 (1964).

[9]

Watkins,

D. S.,

I,anc aster,

P', Sovne Farnil'ies

of

Finite Elemenls. J. Inst.

lVlaths Applics 19, 385-397 (1977).

Received 16, II. 1979.

K-l

Dr.

!'.

J. DETTVOS

Lehvslukl,

fitr

Matherrxa,t'ih

I

Uniuersity of Siegen

Höld.erlirstr. 3

D-5900 Siegen 21

West Germany

Dr.

II.

POSDORF

Reohenzentrum Uniuersity of Bochum Universitätsstr. 150

D-4630 Bochum West Getmany

K-_4

Fig. 1

Referințe

DOCUMENTE SIMILARE