• Nu S-Au Găsit Rezultate

View of On bilinear programming

N/A
N/A
Protected

Academic year: 2022

Share "View of On bilinear programming"

Copied!
7
0
0

Text complet

(1)

.

MÀîrÎÈ*rerlcÀ

_

äÉvûË D|Á.NALYSE NUIÍÉRIQUE

El

DE'r'HÉoRrE DE rr'AppRoxurrÀTroN

I,'ANALYSII NUIIEIIIQUB BT LA THÉORIE DIì

L'APPROXIMA1.ION

¡,r¡ii;:i:, f6¡¡10 7j'Nd;:1ì,

l}/fir 'pp;,67-79

,

. .. îhe

general

bilinea¡ prçrprqmilg problern can be formulated

as Tollows:

(1)

maximize

{/(x,

V)

:

ex

+

dy

f

x?'Cy}

,:,

subject

to linear

constrants

I t

Ì ,,, i

,whe're'A,

B,

C âre

i x m, s x lt, tn x

n,

-'luatriccs

resPectivelli

and

a,

ll, c, d, x, y

are vectors

of the

appropriatc clirnellsioll

.

-

, Bilinear ,programming

is a

generalizatiou

of the li'ear

prograrnmiug rrrat lor the

first

time was formu.lated

in

1968

by

.+.r.,r.,rrlN,

rr. il]. He

gavé

àr

programming rvhich

ihttr gar;" .

e local optimnm

itr a firiite

number remarked

that.

oire

of the

Altman's

ïor

the

optimality

and. not necessary.

his criterion'and

corrstructs

a finite

he bilinear programrning.

.t' ,Arr,interesting and

comprehensive strrd.y

on bilinear

prograrnrrring rs'also doue

in tg]-bv

v,r¡iD.,\i, ,\.

I

ON BILÏNEAR PROGRAMMING

blems.

is

nsecl

to

establish sim- maxl-

plogfammlug

pro a local and global

l! .

'

\

,' :.

:\.

il.r by

r.

MARU9CTAC

I

I 1clu5-Napoca¡

1.

Introduction

'Ax:4, x>0

,

Ry : lt, y2

o, (2)

i''

(3)

(2)

i,,, ,l,If i $'ìe consider: t'he simplex

tablêau

i,i

ilii ,,i;

ttit .,,,, it lr, t' ,i iL; . , , -] t.r li. rr..,';,,, 1

tlren

afler a

Jordan elimination step r,r'e get

the

tableau

i,

x jt'

.

,uþ

,

.'lu

1

trhere C',

b', d', [i',

à' are formed.

by

the eliments girreu

in

(7) and.

B'

is the

if 'the pivot

elemeilt,is,an'elenrreúL

of tlie:uråitrix

R li, /t) .r:i': : :ìl rri , ',ì i ,:, ,' : .'.'J Ì.ì i l:llÌiiri, , ,,i, e,,= C.f $ti i ', . i:, , i, ,¡ \\,^¡;, I

0:

e

0d,

0, R:

0

q.

p b a

OÇ¡

ON BILINBAR PNOERÀITUI¡¡C 69

f:

elirni-

c/"

Ít

0

0 (8)

ch o11e

Ð' 0

(:

þ' B'

d'

AO

xJt

rl--j.

rvhl daTI

ic:

iltddåtio¡sø|, rule

::t: :.' ,i

, ,1,,,1i,. ,

i

L -1i

U:+i

¡í

'Ll's

-

¡tIL I,

Now r,ve shall specify

the

characteristics

of a

Jordan

eliminalion

ste¡:

ln a bilineai

programming.

Thus,

let us

consider

(4) ,f(x, y) :ä,p,*

ø

f äu,ro+

P

+ Ðå

c¡¡.ï¡!¡,

,t i. ' .1, i_

(6)

,Lt,h

:Db¡¡!¡

1. þn,, h

=.1,2,

. .

.,

s,

!:t

and let

bþq

+

O be

the pivot

elêiten't,'

tfiLoiafter

substituting

, ;;,, ,i yo:'Ïl_,Ðijri,+ìo_ao)''

:

oþc

\

i+c

lr.l ¡ ,,i, ,. : ,t

,1i1.,, rrr,

in

(4), we obtan

11¡

t '"t|: :" ir i1':

.f (x,

yi

") - Ð c{ct lD* ai*

-,i d'ot¿o*P'

+'Ð ,, (Ðci¡t¡ -f

cisap

I

Bi)

-

1

(5)

2

fr

(7) 6t¡

z¡,=tfiUi¡*)'#

øn:,' :ft1!' l', 2,i .t.i,'t r,

rryhere,,,

i:

L,1,; r

':" ¡:i:

'. ,;r; f i:i

, fi7,''':;t

'

lri :,i

.f i. :,

..,,,?0r,

,

' l íi(,.'

.r, ii

i

r,i l, li¡i r ii',,

'

' ifii¡l.i\t ir t.'.í',: ':

í

pfqgtflmmlng

:t'4 t

! iÍ.i,t a\ii'il

¡

!' i '.,til ì:,;i' :iì

!'

Ê,

Jorrl4g ell¡nhntiop. ;iu

r r, t, i

I'j

i ,r l

: ii

li 1,.'(.i,: .i ,

'ii)

(3)

:6 oN BILINIAR:P\QGRAMMINö 7t

îo

obtain a b.f.s. we shall use

t

ation stepsl deçcribed ut th-":sectiã" Z.

io

simplify

the uo that A

an¿

B are

of

the full rank. ï'hen startinþ from

.

,

' t.,,' \, I,r i. ¡l .\\);":! r,r'i l

and assuming (witùòut loss of

geierality) that

the

pivot

from

the

ffust

r

and s column of

A

ancl B respectìvely,

,

(Jordan elimination steps) we get

the tablepu i

'

,\^0, *i1* Þ -À;,,1tli + Q'+ nì,,ä,

cl¡

x¡!¡'

a b

-c

- %r!1

f:

(1 1)

P

li1

a

0

rl 0

a1

1,11,

ol

tlteø 'Plocal

/:.1 I

-v

0

b.f

.s.

(xo,

yo),

ahere

bil,ine øù þro gr anr'núng

P lQ

and

-!,

1

1

i¡i i '

of

tk:e

!,{(xo,

xo)

>0,

xs&

Proof.

From

(11)

it is

seen tha (b"

Lemma 1. If

:

(¿1,

0),

yo

.f(x, y)

-(3)

a1

xr- jt:

(10)

"ili¡i.

,'ì¡ ":l 1 í' li î-

t.:'i

¿ ¡

,,i ,lì.:,lt

rl--

0.

'':l

elements were taken

ihenafterrfsJ.s.

,',1 i\til",l',-. '' ' "'

70

r.

MARuscrAc

4

Remark 1.

lf

we

take a pivot

element,in ,the rm.atrix

A

then,itrStead

of tableau (8)

rve consider

the

tableau

'xyl

and after

a

Jordan elimination step

with pivot

elemetrt a'¡o

*

0 u'e

get

the

tableaU - , ¡,i. : :i:

iir

, i:,.ír',,l ,ir'.

,i''r'

XL,,.Zþ'..frr, Y

1

; , ,.,,;, i,i t, t.t:l

3. Optinrality

e

. r i . .. ", : i

A pair (r, y) = R'x R" is

called

ba

1e- soltrtig¡1

of the bili- ,r""r ptägtr*tiriä'g (l) -

(g)

if x

and

y arc

siblc soltrtion

of

(2) aud

l3l

respectivelv.

'-'

-T-h'. tottowing theorem results immediatqly,

,from

thc: theory,of ilinear

cr0

0d,

A

0

Í:

r_

a'

d

0 0 H c

0 0 B

0 (,"r

'; 1/'

A'

fensible (see

fll)

r. If

(x

(1)-(3),

þrogrønl'

bil,inea.r tlt'c

"f

rra o trul'í'on' so aslc

b d.:

oþtíutal'

s an' ,S tkere'.

y*

tken

trk

problenc TIIEOREI,I programming ilØng

Now the

additional

rule

consists itr

.t L-

ll:

ri ¡l ¡ 't ".1

. j .

tl1

:df T'.,

,,ì

(4)

and

so/(xd,,yr) ;-,/(¡0, yo)< 0

f.ot

x,)O, li > 0 sufficièntly small,

im- plies.

(i)-(íi)'

¡

'' "'Ñow,'let

1xo,

yo) be ä

degerrerate b.f

.s.

x0

:

(aI, 0), 'yo

:

(b1, 0), arrd

let us d,enote

':

" Io: {i

æt{1,z,

...,/}Io} :o}

THËoR-rM

3.

Degeneløte,bl,s' 1xt,

P) is

ø local møx'imuttt

of f on

A

df

øød"'o'¡úy'

åf

',

,

, I

(i) p> 0, q ) 0',, , ,,Ì

t' 'P*oÍ..' (J) If '(*9,

yo)

is a

b.f.s.

thät is a locâl

mqximunl, then

"f(x, v) -.f(xo,y9 <

o

in a certain

neighborhood

of

(xo, yo). Considering

xi:

(n.,

0, ..,,

fri,

,..,0), xr- t> 0, i e I,

we have

As/(xr,

yo)

-,f(xo, yo)< 0, it follorvs

that

þn>0,i e

io,

i... p>

O

Since

for *' î X it is

necessary

that

YheI,¡+øju<0

sirnilarlv we

get

,'To""!

r, i

bloo 0,

j

æ

J.

.

, ' From

(14)

it is

seen

that

' .f(xt,y,) -.,/(xo, yo)<

0 ,/(xt, yu) --.f (xo, yo)

:

ON SILINEAR. PROGRAMMING v3

tl

I

I

(i)-(ü)

botd

0, ielo -þ¡t, i ê

Io

!;, t, , ] ll',ir;l

rri, ' i,(ä)¿ .¿li

,( 0,

Y(,i',t

j) .e:

Ion

X Jl; :

, :

wherc

Ð Ð cl¡'x,'!i" Ð

P;

x, - Ð'qi !¡ ¿

:¡*l j-s*l i-t*l j*s+¡

,f(t, y) -,/(xo,

yo) <

i0,

, íri ,

for

each

xrÞ

0,

i: r |-1, ..., nt,

anó.

Þ',0,

i :

s

-l

7,

'.., n, saffí'

ciently

small,

i.e,

(x0, yo)

is

a local:rnaximum

for /in O: X x Y

where,

'X:{x eRnlAx:,a, x>0J,Y={i eR'llfy:b, y>0}'

THEoRE;v-

2. Lat

1xn; Vo), xo

:

(at,

0),

yn

:

(b1,

0)

l:e

I

naxd'cgemeratc

b.f.s.then (xo,.yo) 1salo9øI 1!x!.xi'Ìn!,t::of,f

?l,,ni!ryao(?,,,iÍ, ,,:,::,,i,r,,r,.

(i) p70,q>0., | ;,,i;,:.r,

I

(ä) ,,i'< 0,

V(i,

j)æ Io x Jo, i :

" ; 'il ' :;' ll wherc,¡,¡

I = {r+

1, .

..,

tn},

/ - {t +

1,

...,n}

Io:

{d

* Ilþ,,= 0}, Ju:

{.J

u Jlq¡ *

0}.

Proof. (e). Frorn

(11) rve have

(13)

./(x,

y) -f(xo,

yo)

: -Ðp,x,-L r¡!¡ * Ð Ð

cl¡

r¡)'¡:

:,Ð"(D,i, t, -

Þ,)

*,* ,Ð.[ Ð'1, *, - q¡)v¡+ Ð. l,Ð,

'1,

ti)*,'

; '

From

(13)

it is

clear

that (i)-(ii)

irnplies

that .f(*, {) -.f(xn,

yo)

<

0

for

each

xr>

0,

yiÞ 0

sufficierrtly small,

i.e,

(x.o,

(=+)

Let

(xo,

¡f) be a local

maximum and

I

t (12)

72

a local

maxilnum.

yo) is

Ð r,l D

:t*l ti-¡*r

(14) "f(x', yi)

1(xg, yu)

: .'r

:;..

Now,ifp>0,tI >

consider

ÉJ', àJ i

æ Io¡

j

í*l,o,j

cl¡

tr, i'þ p

(ctr¡ú

-

q,,)t,

lclr't

-

p,)t,

Therefore

"/(x,

y) -./(xo,

Vo)

:,

j n.lo '

'r. rr,r¡nÚsc¡rc'

,r,lrl.;i , i .:_t i

,r:i , ,rlÌ j,

cI

v¡ - ,oi) n i' ,Ð,,r,1,:D*, 'f *, --

zqo)

0, the¡r

fro¡n

(12),

it

follon's.

that

(5)

it4

( 16)

r,.,I. IMARUSCI,!|C

6 7 76

Consider

the

inequalities. :

, ', i , ,, :,,1i. .. :

ON BILINIAR PROGRAMMING

I

{r = n.l

{1 = o"'

i

'i (l*)i r,

e'r4 rh.'á

2. Let

(xo, yb) ba o d'eg'ùoerøia b.¡.s',

If

th'bre 't,s.ø,f'¡'.0,

i

=

Iq,or tlrcyci¡

blu.> O,

j *

J¿, thçn

fot'cucryts\,, (li Vjì

is .not'fe,asîl)tL

solutiÒn, where

' ''

., i,,',,

,,, ,i

, .

i

i.;r,

*u -,,(i11,

0,

. ,. r

,

x,,, ,...,r 9),.,

fu: t,)

0,

(15) , . r, i:

\

tr, :

(b1,

0,

, t . ,

yu, ..

. . , 0)t; '

lu i I >

O.

Proof. Consid"r x""defined

in (ts¡'and let'ø|,'= 0,ti L Ïr;r.ph"ir,l,

: -ol,t <0, Vr> 0, that rleans

xu

É X, Ort

-Ql

=

Similarly it

can be proved

that

yp

é Y, Vt > 0.{' ;r il 'i

Now

the

sufficiency

of the

conditiorip

(i)-(ü).¿,iollowS

directly,.frorn

I,emma'2 and

(14).

\ 5. .

Global

¡r1uxir1¡rm ,

f)l ttrc lriliney

¿liogramrnirrg

Assurnc

tha!

(a9, y1),

xo: (a1,,0)

i.q

a local maximum

of

/ on l).

Iherr it follows that (í)-(ii) or' (i)- (ii),, hold. Fo/ .r': (a',

A)

...,

x¡,

...,0), tr :

(b1,0,

..., !¡, ...i;'0)

we have

¡/¡ ç

1xr

j¿'t tT

.,1, I r í.

since function

/

touch

its

r¡ráxirnurn

irr a

b,f.s.,

ít

follou,s

that

i';,¡,11

i .,,

rnax r{y'(x;,,y)l(x; V)

,er,Xl.X y1},-/(xo,

yo);

;

,ì:i,ri where

Ð,ç

,*,

,,ili,

'

'.:" .t-,

',.¡.¡¡l 'j rrr liì

;¡: ;, i ¡t:l

(17)

5- ',, --

î7r

xi

X1

:XO

'o t']l

I

./(x',

x't -

ntilJ.

{l >,gll(xr, yi) - f

(xo, yo)

:

0},

Yt:Yn

)-\\LJ

j=J

".

.

That !s rvhy, in

ord.er

to

deter nine

a rew local

ruaxirrrun, rve shall

fi'd

a local

maxirnq'r

9f

/ o^n_{x\XÐ x (\y'), i.".

uããing

to

ilre

l'iiiat

constraints (2)-(3) the following lwo:

(18) ' ,i! , ,; 'Dnó ,'t

with this

ner'v

bilinear

programrning rn

e

procêed

.i,ililuri u¡ti1

the ptoblern becornes inconsistentl

ri t f i ii I I

6r, Ileppripfion

,,of the

algorithm

Frorr

above u'e cönclud.e

withrthe'folloiving:

algcirithm

fór he

global

rning

probleru.

u

(10)

find a

b.f,s.

f (i)

holds tb.en go tci step S, other_

osen

in a

colurnn

for

u,hlch

þ¡ 10

i l,

....

s(1þ

3.

'r'ests

(ii) or (ii)r. rf (ii) or

(ii),, holcl

the'

go

to step 4.

other-

tvrse,

if

, ;: ,

_:" -"

,

t)¡')

0,, (d,

j) e II x I2

i

$.9,two. J.s. by chosing'ilre' þivcit elelnents

and go

to

Step

2. i ., i:

ii in the coluurn

i

aÀd

j

respectively

*) 'flte tc¡nts corrcsponcliug

to

x.!

: I

ot

yf : -l

,are rrrissilg nr (17).

li! ':l Ìr

'll,¡

i,''j "i

' ,1:

ôtt¡

¡L

Define lli

J/.rr

:

uri\r {t

> jlf(xt,

vr)

¡,fi+9,

yo)

:0},

wlrere

x, : jt¡ : t.

,

r, "

If

there is

j e./

such llnat

f(xi, yt)

,f(xo, yo)

:0 has no

positivc solution,

then

ónc täkes

ii : *.o. Similariy, if

-there

is i e /

such

that

Í(x', yj) -./("0,

Yo)

:0

has

no positive solution thet

yf

':=rrf co' ,'t

:

(6)

(i)

do

not hold

lthere

is -

1 and

-4 _ _B f 4

negative

other

two ¡.s.

and we

get the

tableau

-xt-i,à _!t _!a I

-16

0

-4

-12

0 0

'oì 10

I

0,,

0

00

10000 01000 00010 00101

2 o .)

I

s-6

0

000 20

00o

2 2 2 o

-16

2 4

010 100 0,-o

0

001

0 0

I

3 0,0

0

-ll

-8

2

-0

2 2 2 I 8 0 0

I

0 0 0

I

01 10 00 00 ll 100

5

I

I

6 (,

00

4-8

öñ nr¡.1ñ.ren Þhocnal"iMiñc

Í=

t:

0t

1l

1

-t¡- lt I

-*2-'frg,--

0

I

.>

Àfte¡

other

three

J.s.

we get the

tableau

''.:i-

*L- tu2-

!z': tt-

1_

2, Since we do

0

,5 -6

*l*

tul-

It- tt=

',,. ,

,ii

- qi-

xø_ ,t(a_ rçt_

!e

0- 0-

JL_

0-

Steþ

4.

Deterrnine

xf

and

yf from (16), ,í,,, 1,,r;, ,

,:,, ; ,

st-eþ

5. Add the

inequalities

(r7) to the initiar

constraints and go

t.

Step

1.

,

The .algorithm

is

terminated

rvh:u the

bilinear programmiog

p"obl"rl

is inconsistent.

, i

7. Example

îlo illustrate the

algorithrrr rve,solve the rollowing exarnple

:

maximizè

f(x,y): -xa- llxr- *r, I 4tr+2xry,- xtls* 6xny,*Sro1,n"

xz

-l x¿:2

'y, lyø -2

.' ::, ¡ : t;

1z * y¿:2

i

x, 7

0,

Þ

0,

i, :j

: 1,2,

3, 4.

Steþ

L The initial

tableau

is:

i,,

-

xt

-

xz

-

fia

- x¿- ),t -!,¿ -!d -!¿

0

1

0 0

0

0 0 0 B

1

0 0 0

0 0 0

I

0 0

tr

1

0 0

i

0 0 0 0 0

0 0 0

_()

subject to

I

I to

2 2 2 2

After a J. s. we

got

t ,1,1,.:

I. MARU$CIAC

^tL

0.:

0- 0- 0-

0Q0 000

)-

xs

2-t

0

650

(7)

whjch sholvs

that the new

problem

is

inconsistent

(xr: -xu -

1

<

0'

foi

every

xu2

0).

. Theiefois

¡0

: (2,2,0,0) ;

y0

: (2, 2, 0, O) is the optimal

solution and

/(x0'

vo)

: 0'.

(Iu'iu. ,,8øbeç-tsotyøi", clwi-Naþocø

Ul A:1 t rrr a n, l{., Bilinear þrogratnnti.ng.8u11. Acarl. Polo[. Sci. Sér. Sci. Math. Astr:ofom,

. phys.,

t?l Sokir¡r'.st íjøhstat'eM.Al,'tmana,,tsilineitcoeþrograntniro' uanie". (33), 91-98 (1975)'

[3] V an <1 al, À., , Èkonomska Analiza 4, Nr. 1-2, 21-41 (1970)'

0

1 1

0 0 0

100 000 000 001 010 0 0-6 11 I 0

0

0 0 -11-10

oN tstl]NÉÀR pnOc;n¡løvrÑfi 79

f:

Received 30. llf. 1978.

îi

1

-8

2

1

3 I 2

-19 -25

RËITDRENCES

(Jniaersitøieo Bøbeç-BoIYai

Faculløtea de Møtematicã Str. Rogàl'niceønu' I 3400 Cluj-Naþoco

Steþ

l. After

one

J.s.

rve

get the

tableau

-%r-xs-jt-!s

It:

tuÙ-

*4 - JL-

Jb

5-l 62

Sleþ 3.

Since y'n

-

11,

þs: l, 4¿,:4, 8s=g.it follows tlnat

(xo' yo)'

xo

=

(2,

2,0,0);

Vo

=

(2,?,0'Q),

is a local maximúm aird /(x0'

yo)

! 8 -- 8'=

0'"

steþ4.wehave i I 'i i r¡ i'

l@: fl-.f(xo, v9 : lt(t -3) ':

o;

i'"' t),,:3

Í(*{,"yr) -,(i.,

Vo)

: -19t + 6ltz'\0,'tsa ; :

tO¡6,

I

Similarly

we obtain

=='19/6, and

yiì: +co.

liìl

'I'herefore

the

inequslities (17)

are ,

'

Steþ

5. The

new simplex tabjeau

is the

following

0 8

1 a

11

10

'

xT

: min

{3,19/6}

:

3- L MÀRtr$clAë

where

2

7,q

tt

2

6

r ir..t ¡,i i ''ì

2

llli ' ' l' ;; tl

: +oo

/c¡

: -5,

il i (, ' ir

y1),-/(io,

yq)

:'-51,- F:ö,

\.' \ ¡r,:'.

r,¡ i..: ill'r¡ì)'11:i

,r$

2 I

-19 xè 3i'and"i62)

-: 19.

it - ij Siuce

Í(x',

: i 1l

-frt-1h -¡t¿--!s , 1 0,Q,,Q,,,i

4.

1; 0 0,' 0

I

0,09,1 ,0,0 1

A

0 0 0-6 01 00

tuL-

u2

,-,

tu6-

lt-

Nõ-_

Referințe

DOCUMENTE SIMILARE

In the very recent paper [5], Strichartz investigated the behaviour of the arclengths of the graphs Γ(S N (f )) of the partial sums S N (f ) of the Fourier series of a piecewise

babilities of some random variables ixed level by random processes is of.

rnetric sþacets X^rbsþectiael,y Y are-NS-isomorþkic, tken the corresþond'ing quoti,ent sþaces læ ønd, lo øre homeomorþhic.. Rernarh

For the quasioperations the interval arithmetic is not inclusion mono- tonic.. \Miss' Berlin ected with inversability of complex ervals) is the scope of the

The Magnetoresistance effect is caused by the double exchange action between Mn 3+ and Mn 4+ ions [13] , The magnetoresistance peak value M RP of reduced samples B2-B4

By contrast to Yeats’ central position at the time, as acknowledged agent of cultural power, Joyce’s resistance was catalyzed by the energy of self-exiling –a third space

Key words: Christian philosophy, Catholicism, Protestantism, Orthodoxy, Russian Religious Philosophy, theology, unitotality, apophatics.. Vladimir

The evolution to globalization has been facilitated and amplified by a series of factors: capitals movements arising from the need of covering the external