MATHEMATICÀ
-
REVUE D'ANAI,YSE NUIUENTQUEET
DE îHÉORIE DD IT''A.PPROXIM.q.TIONL'ANALYSB
NUMÉRIOUBET LA
THBORTBI}E
L'APPROXIMATION Tome B, Nol,
1979,pp. 127-136
ON THE LEVEL-UPCROSSINGS OF STOCHASTIC
PROCESSEStry
T¡AR¡.G ABDEI]
-
SAI,ÀM,q.TTIA (Kuwait)ability
of at Teast ?t,integrals.
upcrossing and
the next
one.is consi-n-th
moment asa double
integralrst
occurrence. densityis
obtainedfor a
general stochaãticfor an
ergodic processthe n-th
momen-tis
expressedin
-2) nd
momentof the probability of no
crossiägsin
ttrel.
Xntroductionbabilities of
some random variables ixed levelby
random processesis
ofSEY l2l).
For example theom loading (ravrnoe
[5]), e a fewof the many
areas -2.
Some Fundarnental Ilelationshipsr,et
x(t) be a continuorls random variable. rre¡e we shalr consider some random variables associatedwith
the crossings of x(t)with
the level lø(l)l: : L in its
durationT. r.et E,(t)
bethe eveit tnal'lx(t)l
exceeds the'ÍevelL (n l)
timesin
thei¡terval"(O, fl
anð.then-ti
"p[tàÁri"g-of
the reveri
occtlrs
at
time úin
thehorizontal
window sense ofxac
"rtõ
sr,EpraN l4).Define
the probability
densitíesþ,(t)
anð.j^1t)
as follows:þ"(t)dt
: plE"(t)
:lø(0)lç Zl
128 and {2.1)
FARAG ABDEL _ SALAM ATTIA 2
!
3 ,ON TIIE LEVEL-UPCROSSINGS OF STOCIIASTIC PROCESSES 729þ^ç¡at: PlE,(t)
:lø(o)l> Ll.
The probabilitylof at most ø
upcrossingsin
(0, ú)is given by v,ilt) : É u-pl
Êor
n : l,
þLU) is thefirst
occurrence density consideredby nrCI
anil È:0¡pnn [7]'
The
probability of at
least ø upcrossingsof
the levelZ in
theiltcrval (0, T) conditional to lø(0)lç I is thus given by
T'T
'\
Þ^lt)Or.Similarly
\
O"Vl d,tis
tine correspond.ing conditionalprobability given
00 lø(0)l> Z. Thus the probability of at
leastn
upcrossingsin
the'interval (0, 1) is
givenby
which by substitution from
equation (2.3) woulcl giveq.o 1
, 0
I
þrr)d,t
n:0
\2.5) v,(t):
þ,+,(,)d.. + ã, \ õ,þ)d'l
, -{o, ); n2 |
I
NT T
I
0':(2.2) a.o
þ,(t)dt +
ão þ,ç¡at,3. An
Inclusion-ExelusionFormula lot þ"(t)
and, þ"!t)0
'where
ao:
P tlø(O)l( Il and ão: Pllx(O)l >
¿1.If
the event tlø(O)l< Zl
is consid.ered.to
be th-efirst
upcrossing _of_the levelL,
tlne probabilidy of exactly ø upcrossingsin
(0,l) is
represented.by
Ilere
we shall use a technique developed-by ¡,c.nrr,Eg ill to
obtaina
representationfor
þ,,(t) and.f^1t¡ in
termsof
certainmultiple
integrals'Divide the interval
(0,l) into m eqtal
subintervalsÂ1,
42, ' ' '', A'
¿nd define the
two
eventd e¡ 'anð, ø-¡to
d.enote an upcrossingor no
upcfo- ssingof the
1eve1L ín
L¿ respectively.'Iake A;, i:1,2,....,m
so small -asonly
one crossing coulcltakf
place,iÎ
any,in 4,.
Henceif
Q,þn) representsthe event that lhe n-th
äpctóssingát tfr" lävel
lø(/)l: i'takerplace in the interval L^,
my'
n,then Q,(m) can be
written
asthe
UnionZtT-):^utually
exclusive events (m-n)l,
of the
fromU,(r) : ar{
I
ft t)d'r-
0
þ^¡1þ)d'r
+
0
{2.3)
+ã '{
0
þn-I 4 d.r
0
þ,i r)d"c
n2- | For ø:0
U o(t)
:
au{ 1-
þ,(r)d't letf)
ê,(\ .. f)ê¡,-tÀer,Uè¡+tÀ...n ë¡,-tÀe¡,1)
èi,¡rn "'
À ã¡o--t )
e¡n-,Àë¿n-+rn
. .. À
ër,-tI
e-1.(2.4)
Notice
that equation
(2.3) giveslor n : I
'Thustt
uLQ)
: o,{\ nk)a' - \ o,k)d,}* o,{, -\õ,þ)d'rl,
000
fr-fr+L ,n-tr+z i:I
UU
¿r:iL+llt-l
(3.1)
PlQ"(m)l:
PU
i¡¡-1:i6-1},L
by the
assunptionthat ilø(O)l> Ll is the first
upcrossing.Equation (2.3) is
a
generalizationof
a formula givenby
nrcE and ¡EEe[7] foi the
pròbabilitybf failure of a
mechanical system subjected.to
arandom loading.
(êrf) ern .'. I ê¡-, O ¿;,lì e¡,+t)'.' n
è¡"-tI e¡,À ë¡,+tÀ I ê¡,--tl) e¡,-l ë¡n-,+tn' "' À ã^-lÀ
e^)2 -' L'analvse luryéri-que ç! le !þéglie qq l'cppTsìri4ation : Tomc I' No' 2' 1979
FARAG ABDEL _ SALAM ATTIA 5 ON THE LEVEL-UPCROSSINGS OF STOCFIASTIC PROCESSES 131
130 4
feplacing ë¡
by
1- e¡ and
after simple manipulations the last formula is.written in the
formusing equation
(3.5),the
conditionalprobability
of at least ø upcros-sings-in ih" iot"trr"l'(0,'l)
giventhat lr(0)l< I is
represented by, (3.2)n, -ñ+l m-¡*2 t!-l' ( I l"^1 \ I
PlQ,@)l : ,Ð ,,à,
'.' ,,_,-D-,*, l" LlA, "',l À'^l-
-8,"[(Ö ',,)n'-f + f, ,fi*,"[ffi "r)n'-]- |
Taking the limit
as A,*
0,þ,(t) is written in the
formþ^(t) :lim PlQ"@):
|*(0)l( Zl :
(a.s) :\at,\ot,'
,ttI{ Í"(t,,t,,.'.',t,-t,t)-
0 lr tn-
(3 6)
io.n o,: å
t-r)t-tl
ln*'i -2\ "_l ,J"
0
I
,rI
\ Í,t,,,,
t¡ *t-3
æ
'-'( n+x -
n-l ,)
X d'¡ dt, dt,
dtt
¡ t n+i-z¡ r) d,t,
* r_.r:D
t- tl
XX
I
tr
dt,
f
lnìi J
-s
dtn*n , It¡i-2
Similarly
þb I d,¡
@/
)- t-1)'-'l nti-2 n-l
Xæ
Ð
h=o1)'l
dtt
I
tadtn-, .f"(tr,
tr,
. ..,
tn+h)dtr+h (3.7)lr
fl I
\
0
f"(tr, tr,
. .., t,*¡-r,
t)d,tIr*h-l X dt,
dtr.",
where (3 4)
tn+i 3
.f"(tr,
tr,
. . ..,
tþ)dt\, dtz h t-s'',';"dto
:
4. Intervals
betwccn UPcrossings PO {l'(¿,)l< ¿ n
lx(t,I dt)} r : lr(o)l< z
(4.1)
W(t): Mt + O(t) ast*
0.Using equation (2.5), u(t)
canbe written in the
formi.e.
.f,(tr,tr,..., tk)dtþtz...
dtLis the
conditionalprobability of
upcros-.iogÉ"'iir ii,, rr'+"llt)',
(tr, t"¡"dtr),
. . . . , (tu, tr-l
dtujgiven that
lr(0)l <<¿.
The
independent variablesin f, (tr, tr,
' ' ':;
to)..t?! be
interchangedarbitiarily
provia"d-tttit
ip¡ fias'iÈË-
sámedistiibution throughout
itstime
durátiôn. Thus equation'(3.3) can bewritten in
the form(3.s)
þ,(tt)
:å r-r);-,lø :'- r')5.,idt,
. . .,,j,_!^,,,t,,
. .
.,t¡ti-z,t)dtn+.-z'
- A
similar expression torþ^1t7 can be obtainedwhere/, is
replaced by7, and Í,(tr., tr,...,..,th)dtltz...,,dlo is jle conditional
probabilityor upcros ,,og, ,n pr,
-í,t aq¡, (tr,ir l
dlr), ' ' '',
(to, th+ dth)
giverrthat
lø(0)l<
Z.(4.2)
æ
u,(t)
:f
U ø:1.,
"
:
å" [t - '. \Þ-*'?)a, a,\o,oa]
Lat U(tt,
t2),D(ü, t2) and C(tt, lr) Þ" the number o[
upcrossings, rlou,rrcrossingïã"a
cióssiãgsof thclevcl I be x(t) in
(1,,lr)
rcspectively.Define, for t > 0, h,:0, 1,2, '..
'(4
3)
Rr(r,t) : PIU(-r,O)> I,
C(0,r) <
ÀlÏ32 and
i4.4)
S¿(t,l) : PIU(-I,0)> 7, r(0) > U, C(0,1)< /tl'
Thus Ro(t, /)
-
So(r,4< PIU(-r, 0)> l,D(-.,0)>
I< P lC(-r,0)>21.
Ry the regularity of the
streamof
crossings,the last inequality
gives{4.5)
Roþ,t) -
So(", l)<
O(r).Ì{ow
So(tr+ rr, t): PIU(-rr,0)> l, f(0) > U, C(0,4<
i¿l+ t PIU(-tt-12, -'it) )- l, U(-.r,O) :0, x(0)> U, C(0,1)<
ft], The eventin the
second term on theright
irnpliesthat
thereis no
upcros- sing or downcrossinin (-t, 0)
andthus
alsox(-rt))
U, t.e.it
iruplies theevent lU(-", -r2, -"çL)) l, x(-tr)> U,
C(0, Ð<
å]and
by
stationarythis is the
same aslU(-rr, 0)> l,
*(0)> U,
C(0,1f
cr)(
h l.Thus
So(",
+ rr,t)?
Su(tr,l) f
S¿(rr,t
J_¡t)(
S¿(.r,t) {
Suþr,t).Using a lemma
proved by rrrrNtcurNp [6],
.since So(r,.l) is
nondecrea-sing as
r
increases, Sr(", l)/c convergesto
alimit
asc*
0. Thus,lrom
eclua-tlon
(4.5), koft, t)l,c also convergesto a limit
asr+0
and henceby
(a.1)Roþ,
t)lu(r)
tendsto
alimit
asr+0. 'lhis limit isfinite,
since k,,ft,t)lu(t)
5 l,
and we write(4.6) zh(t):t::,w,
Zo
(t)
reptesentsthe
conditionalprobability of no
morethan å
crossingsin the interval
(0,l), given that an
upcrossing occuredat t :0.
Define
now(4.7)'
Fo(t): | -
zþ_L(t),h: t,2, ...
4'(4
smg f.uncthe next
upcrossingis
represented.by
Fr(l)__ By definition, U"(t) is the probability of
rz upcrossingsin
(0,t),
i.e.U*tt)
:
PIU(Q,,t).:
"1.
7 oN THE LEVEL_UPCUOSSTNGS OF STOCHASTIC PROCESSES
'Io
express Fr(t) in terms of
U o(t),
we havefor
,u>
0 :Uo(t)
-
Uo(t* t) : plU(O, t) :01 - p l\(_r, t) : 0l : : PLU(-¡, 0)>7, U(0,1) :01 : : Rr(", t) +
O(r).Thus by
equations (a.1)and
(a.6)FARAG AI]DEL SALAM ATTI,\ 6 13fi
(4.8)
i*5ftlgdt : _MZr(t)
and hence.by using equation (4.7), tl,'e right-hand derivative D+Uo(t) exists
and
satisfies(4.9) F2(t):t + M-rD+Uoþ).
5.
Momentsof thc
trnterval befwecn UperossingsThe
meanof Fr(l) is
givenby
(5.1) Lt
- F,(t)ldt,
where
both
members ruaybe infinite.
Therefore (5.2)Since
lU oQ*
a)_
U o(t)l(
zøflcl),it
follows.that u
oþ)is a
continuousfunction of /
and hencethe
mean ,ofFr(l) is
given by\,oo,p¡:
0+
[1-uo(oo)].
By using relation
(2.S), we have(t) M
j
tdF0
\tan,ttl:
00\
\nn,p¡: - + \o*u,p¡at
0O
l, - o,{ r - \ø,uto,¡|.
0
FARAG ABDEL - SALAM ATTIA o
q ON THE LEVEL-UPCROSSINGS OF STOCHASTIC PROCESSES 135
t3+
For an
ergodic process,þr(t)dt: 1
and hence[5] K a rn e d a, H., On the þrobability d,istri,bøtiotø of the number of crossings of ø cerløin resþonse leuel in raødotn uibratì,on. Mem. Fac, Þagrg. I(yoto Univ., 31rr 68, 83 (1e72).
[6] Khintchine Y. .A.., MatlternøticøI wethods iøthe theory of qweueing, Griffin, London, 1960.
[7] Rice, J.R. and Beer, F. P., First-occuvrence tivne o-f highJeuel crossings in ø con- tinuous ra'ndom þroaess, J, Acoust, Soc. Amr., 39, 323-335 (1966).
f
0tdF2(,)
Un'iaersily of Kuwøit, Deþartment of Malhernølias
an
intuitively.reasonable result.For
higher moments or F 2Q),it is
straight forwardto
showthat
Received 15. V. 1976
(5.4)
Q.oI I
1- f
l
0þ'
,Ç d'¡-
a.o1-
t n'ola"llth-2d't:
_n(n - l)
æ@
o. [[ --tJ
¡n-zPr(r)d,rd't.M 00
Again
for
an ergodic process, tine nth
moment 0L F2(t) is given by(,5.5)
0
i
æ æ
I
I
n(n
-
1)t"dFz\t) ø(n - 7)ao
J *-'[t - þ,
þ)d"c d.t:
tn-2u
ou)dt.M M
0
The relations (5.4) and. (5.5) hold
in
the sensethat
both sides are eitherfinite and
equaloi bôth
infinite.REFDRÞNCES
[l] B artlett, M' S., An inþod,uation to stochastic þfocesses. Cambriclge University Press, I,ondon, 1960.
t2]Blake,f.F.andI,ind.sey,Y'C',Leuel-crossingþroblemsforrandomþrocesses' IEE Trans. Inf. Theory, 11-19' 295-315 (1973)'
t3lÇ¡amer,II.and.Leadbetter,M'F'',StøtionaryøndRclatedStochasliaProcesses' John WileY ancl Sons, New York' 1967
tA] Kac, M. antl Sllep ian', D., L-ørge excttrsions of Gøussøiøn þfoaesses' Ann' Math' Sta-
tist., 30, 1215-1228 (1959).