• Nu S-Au Găsit Rezultate

View of The generalized solution of a nonlinear degenerate parabolic equation and its numerical computation

N/A
N/A
Protected

Academic year: 2022

Share "View of The generalized solution of a nonlinear degenerate parabolic equation and its numerical computation"

Copied!
11
0
0

Text complet

(1)

72 B. WOO|)

U

ìÍÄTHIiT{A'IIC,{.

]ìEVUB I)'ÄNAI?YS}) NUÀ{TIRIQUE

D']' D}1 ,r.IfÉORIÐ DE I]',{PPROXIì{.A.TION

L'TINALYSìì

NUMEIìIQUE ET LA THE0RIE rlE L,appRoxIn[,ITIoNI

illome

lJ,

No

l,

lg8,4,

pp.

73_gB

I{EITERENCTìS

srø. [0, 1] þar dcs 325-3-r3, (1981).

Laþl.acL : --1 þþlica- Sciences clc l'Uni- tntnn. n¿oduli of ord,.iuar I d.i.fferantiat, ()þcr.a.lors,

3, t_15, (1971).

I.Jtc ntod,ttli of sntoolhncss, tr{ath \¡eslril<, $(24),

bin.ati.otts of netúial

224 _ 1250,

Positiue cyatùt¿

n Institnte nelhì,

ol j,it11,ar. positiu.c Oþcrators for IIi.glt.cr Ordcr

l lnstltute of ,I.cclrnolosy,

Kanprir (Incìia), of l:uncl,ions oJ a Rcal Variable, ìlacrlillan, J)oler pnl¡lications, Inc., N. r-. (igJS) ftece,rcrl 2S,X.1983.

t)t[alhenntics I)¿þayl¡t¿¿n.t

I'uit, rsilt, ,,t .l rizott,t.

l'ttt:¿t¿, -!ri.,t¡,t,,qi72i

TrfE GENERATJLED sor-,uTroN otr A NoNr,rNriAr{

DEGENERATE PARABOI-.IC EQUATION ANI)

ITS NUIVIERICAI, COMPUTATION

by

]1RVIN SCIfI.)C}ITBR

(Clu j-Napoca)

crassical

Our

h$'à:'i,ï,i,:lì:

cal

so1.t

done

b¡'

means oI

;

co

ntinuo h

r,ve show

that it

cot\/erges

in L,' to the

exact

one

(Theorern 5.2) .

One

dimensional_

problems of in

[3],

1101. The e_xplicit diffeience

scheme ¡V

îLr"

euthor in [11-14.l but under

mor

úa-ely

,p."onr."*, lio

,of "lass

c

t'å;r!r!:i

attentiorr is devotecl

in

$

3, to

ontoge_

neo11s bonndary ancl

initial

co

I. The diflorential

problcnr 'l'he problem \\¡e ate concerncd \\,ith can be

v,rittcn

as

(l'1) *:

¿'¿

or(,t) |

o.(x,

y, t) on

Q

-a x lo, 7't (1.2)

u(x,

y,

0)

:

uo@,

),) (x, t,) = ç

(1.3) u(x, jt,4l,,:

r,r,r(x,

y, t) S:

d12

x [0,

7'],

where

o e

R2

is a

boundecl, convex domain,

0 < r ( fco. we

co'sicler.

trvo

spatial

variables on11., Tor the sake of siurplicity.

(2)

THE CENERALIZED SOLUTION 75

74 ERVIN SCHECFITER

The

functions occuring

in the

above problem

rvill be

subject

to

the following assumption:

(i)

uo eC(C¿);

q = C(S); a e

C(Q)

) trs,'uþ a 2

0

(A)

(ii) I e ct(R+),

9(w) and p'('u)

)'0 Ior

ø¿

> 0,

9(0)

:

0' I)enote

M 2

uo, 1tr, &.

We notice

that for thc

examples rve have

in rnind

(such as 9(u)

:

u'',

n <7),

g'(0)

:0.

IIor,ver.er

this

condition

is not

neccssary

in ou¡

consi-

derations.

r)[rrrNrlroN.

A

functiorytt'

e

1."(Q),

u > 0

(a.e.),

is

said

to

be a r'veak

sohition o1 (1.1)

-

(1.3)

if

:

(i) It

satislies (1.2), (1.3)

tu a

generalized sense.

(ri)

e@)

e

L2(0,

T;

ÍIL({))).

(iii) For

any

f e

111(Q) such that /1"

:

6, í).f _ âçþt) ôf _ ôç(tt) ôf

At âr ô'v ôy ôY

rf

tlx dv dt

t

has

the

tecluirecl properties

for

(1'4)' Replacing

it in

(1'5) I^¡e get

I'he

second

integral

can

be written

as:

¿ 3

\(,,,-r,t,)(,e(u,) - e@))dxctvctt.

l{[ Surrrr', - e1",¡ta'fx

a

x fr(,e@,) -

e(x.z))

.it:.@@,) -

e@,))

drl?rtn4")- e(',))Ì

dxctv dt

- +\*{

ti i* - ry?1,") n ti r+' - ryl^)":l'.

c'Iv

" :

: ;

r {(i,+* - +?),,)'* (i i'v - H*)"10. o,

(1.1)

\(.

5, -

S

U {(r, y, r),

('",

y) =

O}.

Condition (r;) is

to

be interpretecl

in

the fo1lou'ing sense :

there

exists a sequellce a,,

e

Cn (Ç) such

lhal, a,,+ u

it:t' L'(Q),

unl"n

tt',

iri

I'z(S) ar'ð. v,,(x,

y, 0)-

uo@,

t) in

Z'z(A).

rHnoRrrll l.l.

Under tlt'e Assuntþtion

(A),

th'e þrobl'ent

(1'1) -

(1'3)

Jt.as

of

nt.ost on,e ue(ah sol'xt,tion.

Proof..

(see

f9l)

supposc

that thcre are tu,o

solütions 'ttr,

u,

antcl

prolc thät they

òoincicle a.e. 'l'hen b1' (1.4), (1 5)

I lt,, - ù?{, - i.k0,) ç(,,))

'/,

- !,,{r{,,,) - p(",)) ','rfo*rb'

rtt

:0'

ì I Òl c) t (\'

a

'I'he

particular

function

wl'rich

is

positive.

IIence

(,

pq - ur)(eþt,) -

e(ur)) ctx tly dt

:

0 J

a

so

that ur -

tt,z a.e.

on

Q'

Remark 1.1.

our- interpretation of condition,(z)

o1

th.e

Defiuition,

iupli"ì-lir" fãllo'ing

uss"rtinrr: .If .

the

corresp_onding

traces exist

they

coiiicicle u,ith the d.atã functions. As

it

was proved

in [7,

Ch.

VII, Th.

2'1]

the

traces exist provided

that

O

is

sufficiently regular'

2. Thc

tliliforcrrce Problem

Consid.et

the rectangular mesh R,, r'vith step

h

) 0 in the Ox'

Oy

directions ancl

t ) 0 in

Line

Ot

d-irection, such

that 0 e Jl'

l)enotc

O":

:

R,

ll O, Q,:

Q

) Rn and x¡: ih, y¡ : ih, tn: /at;

U¡¡(h)

:

[J(x',

j¡,

t*)

: U(t).

Ptr.t

U¡(tt)

- u(h\ u(L

1)

ancl sirnilar

ly (J;,

(I-,

lor the

back'i,ara

dltt"r"o"es in thc

space variables.

The forrvard dilferences rvi1l be clenotcd-

Ly U-, U,,

(I ,' d.x d.y dt

!

a a

-l-

i

C)

Í(x v, t) :

o4@,

y)f(x, y,

0) dxdy

lq@,)

- e(u,)ldr

(3)

76 ER\/IN SCIIECHTEIì

As

usual

L,,U(k)

:

U

;(lr) +

U r\(h.)'

To the differential problem

(1.1)

-

(1.3)

we

associate

the

follo$,ing

difference scheme:

(2.1) u¡Uù: a,e(u(À)) +

q'(tr)

on

Qn

(2.2)

U(0)

:

uot,

(2.3)

Ulrn

-

ur(x,

Y, lrc) t¿

1,

2,

.

'. /i : li]

I-Iere

u¡¡,:

uçlao

and' 1,, is

the

set of points (xo, y¡)

R,, such t:ha19 aL least one

ot the

tour neighbouls

|

(x¡+r,

),j), (x¡-t, y¡),

(xo,

y¡+t), (xoy¡-r) lies outside () '

O,,

: -rl \

n

- È¿/¡ . r/r,

Q,: {(*, ),, t); (*, y) -

Q,,,

t:

t1,

t2, ...,

t,,}.

The functions

u,

and 1,!'(r¡ are defined as follows:

ur(x,

y, t):

or,r(x*,

1",

t)

r*,,lreLe

(**,t"") e

dQ

is the

nearest

point to (t,,

1t)

(or

otre

of thcnr but the

same

on all

levels) .

TrrrioRliì{

2.I. IÍ

a.ssurnþtion

(A)

holds ctttd (J

is

a solutioto of lhc dif.fc' rctcce þroblem (2.1)

-

(2.3), tloen

0<u3x[0,

where

A[o:0+7-)M.

Proof

;

We show

that

U(h')

=

(1

+ kr)II

for

/r . 1'

')'

-;

'

., 1i.

J.ssurrre

tlre contår)..'lhen

there exists a

triplet of

jndices

(ut, tt,

h),

h>

1so

that

L|,,,,,(h)

> (i f- hllVI

anð.Uo¡(h

-

1)

= (1 I

(/¿

- \)r)Lt ior all

(i,

j);U',,(h)

beíng maximtlm on Oo,

By the definition oI

l'1'1,

(xn,,

Ju, rA) e O,, ancl

L,,(J,,,,,

<

0.

tstr.t

U,,,,,(h)

:

U,,,'(h

- t) -l

;t-\"'7(U""'(it'))

+

o(n)

¡t:rd

LT,,,,,(k)

r

(1

+

ltr)X4,

u'hich

ieads

to a

conttadictiorr.

5 rllll cENEIìALtzrD SOLUTION 77

No*,

cousid.er

the following linear

honogeneous algebraic system:

V¿¡

: rù,,(a¿¡V¡¡) (*t,

y¡)

=

Q,,

(2.4)

I/¡¡ly

n: 0

a¿

>

0'

r,¡ì¡r,\

2.1

. Iìor

curu¡, giaem a.¡¡, the systent, (2.4) ød,mifs

only

the triuial'

sohtliovt,.

Proof

; II, on the contrary, for an

.(x,*,

y) = %,.

".g. V,,, 10,

this

cotrple cá1

be

chosen

so that

L,o(a,,uVu*)

ì 0, but this

contradicts (2.4) .

A siuitar

argurnertt applics r'vhen 2,,,,

¡

0'

Consider

nol',

the linear system:

Vvtj(k)

:

Z¡¡(/t)

)-

t\',(o"¡¡(lt)Wü(h))

+ m¡¡(/e) (x,,

y¡)

=

{In

(2.5)

I|/¡¡(lt)

:

Z,¡(k)

ott

I',, a¡¡

2 0,

7' '.

{ln-' ft'

coRoI,L-\I{Y 2.1.

lìor u

giuttrt'

Z and

h

: l, 2,

' '

', I{

Jixecl' (2'5)

has ct ttniqwe soltttiott .

This is

an inunecliate consecluence

oI

Lemma 2.1.

A¡other-. conseqllellce

oI the

sa¡re Irem¡ra refers

to the

systeÛl :

l4r,¡(k).-

I(¡¡(lt

-- l) Ì

tÀ,(øiift)W¡¡Qt))

)-

m.¡¡(h)

on

O,

(2

6)

I'I/tj(tt)

:.

t¿z(xt, -)'¡,

tt) (xr,

-t'¡)

= 1,,, lt: 1, 2,

'

"' Ii'

lV4(O)

-

rr,,(r¡,

-i1) on

Oo'

rrcr-e

I,'iQu-, R, I'

= 0,

ç(0)

:0, I =

Ct(R*), eil T'¡r(h)

"(/'D-

V¡¡(t¡\

+

O

e'(0) Vrj(h):0

r,ri-\L-1t.\

2:2.

Stt'þþost: co'nditi'on

('1)

hotrls and,

V:Q,,-, Iì is

g'iveto such

tltot V 2 0

a'tod. tz

r.r

rL,.

'fhen

(2.6) høs

a

xtniquc sol'Lttion

l,l' :

Qn-

IN

sttclt tlt,øt

II/ >

0,

Prottf

; It is rcadily

scen

frorn corollary

2.1

that there is a

unique solution

for the

svsterr.

II I7

takes negative va1t1es, there

exists.t

couplc

(nt.,

n)

such tha.t

trl ,,,,,(lt)

< 0,

Ln(o,,,trY,,,,,(h))

>

0

a:ncl 11r,,,,,(h 1)

>

0,

but this

is impossible accorcling

to

l-hc ecluation.

'lìr

:

lernma

is

provecl.

4

a¡¡(lt)

-

I

(4)

78

F'or

a

fixecl

å e {1, 2, ..., Ii},

(2.6) delines on operator:

G(/a) : R"n

* Ri, Il(D *

IA&), s

.:

card f)r,.

r,riìnrÀ

2.3.

Under tlte assu,m.þtion,

(A)

thc oþerølor

G(k)

hns

ø

rt.nirlue

Jixed þoint .for

nn¡t

k - l,2, ..., I{.

Ì?roof

:

Since 14/

>

0,

llw (þ.)ll,

- h,l lr,i(h)l -

/t,

I

Vr,,¡n¡

:

Q" Qt'

: lfÐ(W,¡(1,

()n

-

1)

+

r\,^(a¡¡(lt)Vvtj(ÌèD

I

,t,¡(t¡).

I-Ierrce,

if

u,e

prrt

),

-

rllt2,

ltI|l(tùll, < ttrlttr,,ln

ll

-

1)

+

2^tù>:,e94/¡¡(tt))

J,

¡tp

I

a¡(/r),

u ll', f) u

bccatrse I,V

: V on

I-r.

l)enote

p(,1)

: ttlW,6 * t¡ |

2tt ).nt,(ÒQ)

|

r ùtrn(Q)

and

S;"(,I)

: {ø e R-, x 2 0, llrll, !

p(/r)}.

'l'hus

G(À)

:RÌ' -"

So (/¿)

atrcl lìror'ver's theorern is applicable.

lhe

unicluuess follou's flon-L f,emrna 2.2 Rcnrark 2.1. The fixecl

points U(ñ), l¿:1, 2, ..., 1(,

satisf\':

(2.7) U¡(t) -:

A^9(U(A))

+ &(h) o11

Q,,

(2.8)

tJ(0)

-

xrot,

(2

9)

Ul¡.,,

:

xt,,.

3.

llÍesh-hurcl.it¡ns

'l'o

begirr

rvith,

u,e

rccall the formula of partial

snnrruatiotr Su.ppose

U, V arc

r'ectors

with

components

U,, V,, þ=i=q þ, q =2, þ<q,

h l, ¡tlu))n 1- u,tv,t

c

¡IÌ,

h:þ lr

7 THE GENERALIZED SoLUrloN 7l)

In

order

to

cleiine cxtensions

oi

rnesh-functiotr, g'e introduce

the "cells"

;

o¡¡: {(x,,r,) e pz

ilt,

{ x 1:(i t

\)lL, jh,

<1, <(j + l)k}

Q1(/t)

-

<,t¡i

X lln,

-l-

1)r[.

Ðenote

a), : U or,r,

Q,,

: l)

q,,.

o--c l) ,l ¡¡.(J

\Ve obscrve

that

O,, is

the

rectangular donrain generatcd

bythe

mesh-poìnts also detroted b1'

1¡,. Ihis is the

greatest such clomain contained'

in Q'

Q,,

has

a

similar

propelty. fn the

same \Ya)¡

the

smallest

rectangular

domain

containing f) respectivcly Q

are:

Ai,: U a¡j, 0,,: U

tr,r0QlO ttijîQ+o in,.

lu thc

secluei

l e shall

use

three types oI

finite-clemeut

interpolauts

oI nresh-Iunctions.

ø) (0)-interpolation: Given

V,:

Qu-o R,

rts

(0)-interpola1r- fr,, is cleTjncd

in the

rectangular clotlaitr Qn as Ïoliorl,s : i,,l,t,,tt)

-

V.,¡(k)

for any

Aii(lt)

çç,,.

Ò)

(l)-interpolation: Ihis

assigns

Ío

Vn

a

continuous

function

Ví,

deli'

rred on Q,,, such

that on

each cell q¡¡(h)

it is the

T,agrange interpolate _of clcgrce one

in

each

variablc, of the

rralues o1'

Z on the

vertices. Clearil',

I/;,

lnas integrable

first order

generalized derivatives.

c)

Mixed interpolation:

z1r¡

is

defined

on the

rectangular domain

Ç, in the folloling

manner :

on

each rl¡¡(lt)

ít

is linear in

y

and

I

ancl cons-

iant in x.

V¡¡(x.,,

y, t) is an interpolation polinomial

orr

the

face 11 <

f

-t,

3 ),j+t,

l¡o

< t < t¡,¡1.

Arralogously

one

clefines

Vp¡ lor

constant ¡/.

Clearly, all the

¿r-bove extensions

can be

adapted. when Q,,

is

changed"

irrto Ç,,- or f),,.

In

lvhat follo¡¡,s extensions defined on Q,,

or Q, will

atltoma-

tically be

prolonged

for ¡ e lIG, ?'l

by

V'(t):it(t):V(I{r), ¡ e lIG, Tl.

Thus tlre qualitics

ol V'

anð,

i wlll

remain unchangecl.

It is

easil1. seen

that:

(g.2) Y : V)u¡ on an!

Q,¡(k)

ancl

analogousl1,

for

y.

ERVIN SCI{ECI]TER 6

(3.1)

l¡:þtl-1

l,

(l/,)r, u n

(5)

BO IIRVIN SCI-IECHTEIì ô

llecause

lve

are

mainly

concerncd i,vith

the situation'"vhen

l¿,

c*0

u'e shall deal

with

(generalized) sequences

of

mesh functions. Neverteless, we shall speak

of

a

function V (or Zr)

d.efined

on

Ro'

Next,

u'e

iecall

an

important

theorem due

to fadyzhenskaia [5]'

-lrIEoRBì{

3.I.

Suþþose tløat:

(i)

Tkere

is a

constønt C ind'eþendent of lt' and

I

sucln tl't'at

for

V :

Qon -R:

(3.3) "h'ÐVz

<

C,

(iù V is

d.efinecl on tlte nr.esk-þoints outside Qo so th'at (3,3) kol'cls on the zahol,e Ro.

'flrcn,

if

one of the sequence

{i}, {V'}, {Vo}, {Vp¡}

isueøkl,y conuergent

in

L'z(Q) uhen /t,,

t*0,

th.e søtne-is

truefor

tlte other tlt'ree sequences of exten- sxons.

'I'he properties we are formulating below

will play an important

rôle

in the following

sections.

(P)

:

The couple (Q,

ur) is

said

to

have

the property (P) il

there exists a

fnrrction

f :Q- R

sucir

that:

(ù "fl": ut

S

:

ôO

x [0, r]

(i.i)

Í e

C(Ç)

with

bounded d.erivatives

up to

th.e second order

in r,

1r

and Tirst order in

/.

(P,) : The couple

((),

ør) is said to have thc property (P,)

there exists

a

nresh-fu.nction

J

: Qo-"

R

such

that

(ù .fn(h)lro: %,

h

: l, 2,

. .

., K

(iù

"f¡(h),

"f"(k),fr}ù,f,;(Þ),"f,7(Ìù areboundeclonfl, h: l,2, ..., K.

the

dillerences are

taken

on

points of the

mesh Q,,

on

r,vhich

they

rnake sense. LLz

was

defined

for condition

(2.3).

Remark 3.1.

If (P)

holds,

the

restriction oI

f to

Liue mesh Ç,, satislies

condition (ii) of (P,)

ancl

f(h)|",:1(2 )-'rn, lt': r' 2' " '' I{'

lr,,l

<Clt'

C

independent

of h, t.

Thus (Pr) is "7tear\y"

satisfied.

IÌemark

3.2.

I:f ø, is

independent

ol x, y,

tb,en

ur-

u,L

aîd

botln

(P) ancl (P,)

hold.

'Ihis is a

situation very often occuring in practice. Man¡,' authors have studied the problem of the conditions under which (P) holds.

In

connection

with

parabolic problems

condition (P)

appears

in Friedman [4,

Ch.

III,

$ 4l

(Class C21-") and fadyzhenskaia

[6]

(C1ass O2,1).

TTIE CENERÄLIZED SOLUTION B1

/r. First'ordor

differenees

fn this

section

we are

concerned

rvith first

orcler diÏferences

of

the discrete

solution U

and

their

boundedness.

First

here

is

some

notation:

oro

: {(r,,

y¡)

= oo,

@¿+t, y¡) and (x¿,

}i+r) =

c),,1

Qi :

{(xu,

),¡, tt) = Rni(xt, yi) =

Oo+, Ìt,

:

L,

2, ..., Iq'

f¡-:1(xr,

y¡)

=Qni (x¡-t, yi) = f,) i l¿-: {(*,,

y¡)

=1,; (x¡ r,

1t¡)e Ilu..

+1,

and

-1,

have sirnilar meanings regarding y.

In the

sequel

we shall

alu'ays consider

the solution U of (2.I) -

(2.3)

extencled over

the

mesh-points

of

Qi,,

in the

following rvay:

(J(xu,

)'¡,

tt)

:

tl(x¿',

!'r, tt), (xr,

y¡)

= fii'"O,

where

(Ì",

y';'¡

e

dO

is the

nearest

point to

(xt, ),¡).

'r'rlnor{E\r 4.1. Suþþosc thøt

(i) U

i,s t\t'e sol'ution o"f

(21) -

(2.3)

(ii)

(O,

ur)

has tloe

þroþerty

(P,,) ('íi'i) Cond,ition

(A)

/t'old's

(ia) u, is

Liþschitz continuous.

Tlt,en tlt,cre cxists n. consttut't

C

indeþendent of h,,

r

sz+ch tlLat

,hrD @,(J), I

q,(U),)

<C

ot+

Proof

:

Condition

(li)

ensures

the

existence

of a fuuction V: Q,-ffi

strch

that

Vlru

:

r't',

with

bounded differences

up to the

scconcl

older in x, y

and.

first

order

in L We take V : U

outside Ç,,.

Put

14/

: U - VI

Multiplying both

sides

of

(2.1)

by

dr,zW(h) and summing uP,

s'e

get

(4.1) tlÈlw(tì)uí(h) :h,Dw(h)l\,,,e(u(h)) ! a.(n)l

h

: r,2, ..., I{.

o.

lhe

leTt-hand. side can

be

transfortnecl using

the

iclentit-v : a(n

- t,),

-t, ltr.z

-

hz

I

@

-

b)t)

into

(4.2)

I

!t,,D(u,(tl

': (t

- u,(h -

1)

+ +ui(h)) - tJrzf

(). tzllr) Lr¡(ft

-

1)

-'h t

6 - L'artaìr'sc numérir¡ue et la théorie dc I approxirnation

- Tone 13, No 1. 1984.

(6)

B2 ERVIN SCHECFITER

Since I4l

: 0

on

0ï...q.

and,

W.: 0

on

ll ; W,: 0

on

-1,,

14.3) "h,ÐW(tr)L,,p(U(h,)) :

.crûÐW1n¡t^,pru(h))

:

f)à

-"l,,rrÐ

of lw"(h)

e,pØ.)) +

w,(h)

e,pft,))1.

Frrrther' .rve have

- t,,Dt/, ç.(u) : h,Dv,;(u) * ,F v;ç(u) _ hÐv,ç(u)

A

sirnilar

identity is valid

for

70

Ð', r,(u)

Replacing,

(42),(!_!),

(4.4)

in

(4.1).319 snmming up

for h: t, 2, ..., I{, we get after

applying

ouie

tròre'(3.1) :

,,u Ð Çti e" p,(u) i

L/,

e,(L\) . .,hrÐ

to,

ulq(t) + ,hf

ã: r

D v;ç(u) +

r.i

-r D

i'¡

vrvlu)

I.t

v;ç(u)-D,

-I.¡

v¡p(u)) +.,n\ lwlø *

i ¡/t2D tv,lL ¡

¡z

Ð {u{r<)v(K) _ v(0)u(00.

Tnki'g i'to acco'.! (pr)

and

'rheoren 2.r it

follou.s

that there

exists a

constant C inclcpenclent

of the

mesh sizes such

that

"h'Ð Q. ç,(u) + u, q,(o)) <

c.

Finallv

u'e noticc t.hat,p,(u),z

s.q'(Mùr?"(u)u"anc1 that le"e)l

is bounded

on

Qi,*

'

01,,

so our cstilnaîc is'tiuËl

'

rìemark

4.1

. .*-is.readily

seen

frorn tire proof of the abo'e

theorem

1la1 in ProPcrty (1'r)-it is

cnough

to

r,,1,por" insteacr

ol lhe

boundcdrress oI

thc

sccord orc]"i differcnccs,

tfiot

or À^'in thc

¿i air"ät,.

lror.nì.

Il-cmark 4.2. 'Ithcorcm

4.I

holds rvhen (r.,r)

is

replaced by

- (ir:'¡

(Q,

ur)

iras

the property

(p).

rrrdeccl, let,s

takc in this

case

I/ : -flo^ ,lhcn the right

hancl side

of

(4.3)

is tti

l.¡e rcplacecl by.

-.r'Ð fii,(h)e"(u(h)) ) tv,(tr)e"(u(tDl -,hÐwVt)e"pUrD rt - -

¡tË

Ð -I''

r,r,1z,;

e,gUù) + ,hÐ!V(Ìt),e,p(ttD r), +,nÐwø1e,,(u(h)).

r'

11 TFIT GENLRAL]ZED SOLUI'ION

tt ,1

Recalling

now that

according

to

r{emark 3.1,

there

exists

a

constant C

independenL

of /t,

such

that:

lw(h)lSCtr, on l,

lW"(h,)l

< C on r'h, lw,(k)l < C on t;;,

we have

lor

C independent

of

/2,

itl)

g4w,1tt)e"V(tt))l

+ lw(h)lle"(uØ))t) < c

T_

tt))

g4w,1tr)e,(u(h))l

+ lw(h)l lç,(u(h))l) < c.

Thus,

the prool of

'I'heorem

4.1

can proceed unchauged. Refore passing

to the next

theorem rve introduce

the

follorving

notation:

M :

nlax {'i

,

1y¡:(xu, y¡)

=

Qn} ;

nx:

min

{i;

11,¡:(x,, y¡)

e

d),,}

and similarly N,

rr,

for

jr.

For a

given

n

S

j

= N, A[(j):

max

{i; (*,, !) =

Q^}

Tlre

nreaning

ol m(j), N(i), n(i) is

clear.

l'r-inonnì{ 4.2. Snþþose tlt,øt

(A)

ltold,s &nd.

U

,is tlt.c solutio.n of þroblciri,

Q.l) -

(2.3). Assu,rte tl,tnt ot,r,is L,iþscloitz con,tittt,tous

,in x, y, t. Lat

con- dt:tioto

(P) or

(P,,) hold..'fhen th,e.re

exits n

constatot C indeþend.ent of lt,, s,ucl¿

lh,ct.t

,''o* ll a uj,ll < c.

¡o, r , ll

i.t lll

..1o¡

Prortf

:

\,\rs h¿vç:

to

shou.

that

i1¡ u'1r,

:y,

t)(x,

y)dx rt1,l

.

.,1,1,11,,"(n),

,

rr

I

ior

arny

\l c

(f))

and,

t c [0, 7'.].

Reca11

that L/' u,as

extended tc,

Õì x to,

11.

Iror

(ø, 1,,

t)

e= g¡¡(lt)

10

t''(x. t,.1) -. -L

LU,¡(h) L¡¡e(x,

j,,

t)

., \-_, ), ,t .lr"_,

n'lrere

tlre

sum

is

exte¡rded or¡er-

the

vcrtices

ol

clr¡(h) and

for P e

Il,,

ft,

f\

q¿¡(k) :

,,,,,

(tr\ - t I lor. P -

(x¡'

!¡,

tt,)

' lO for P +

(x,,

)'¡,

tt,)

thc

basic fur.ictiorrs

L¡¡¡

arc

linear rn x, ¡t,

t.

(7)

,8-1

ÌIence on

q¡¡(lz),

k :0,

I,

nSo r'r'e harre

ERVIN SCI-IECIITEIì

I2

¿i

u'(.r, v, ù :

) l{*,*, -

x)(y¡+,

-

y)(u¡),tr,71 1(/r)

1

1- (,x¡+,

- x)(1,-

),¡)(U¡)¡+r,¡(tù

I

(x

- x,)(y¡t,

_1,) (J)¡,¡1_1(Ìe)

| +

(.v

- x,)(! - ylp)4ft)).

13

In

vieu, of

the

definitio¡r t.I l,¡j

a¡d

reclling

that

(,,

=

(O) :

t,t,¡t, t@u))

s c,

'rax {r+r, l; I

I

l,ll ^,

any

i, j

ancl

*fr1 {ldrtit-r,¡1,

1d,,,1',,¡i}

<Crtt'-"- I#I

Using l'heorem 4.1

r-1 11(j)-2

*Ð ,,t^,,Ip.(uo(A))

('tn¡).,l

< cn'rax

{r+r, lfll, l#l}

ü.)

,K-1

\,i,

tu;,t*, .v, t)) þ(x, y) rtx ,t_t,

-

"l l, {u;,{*,r,,

¿))

ü(r,

.v)

t u

tt¡,

I

of \ r¿¿

(4.5)

a-

o,Ð (L,,e(J,¡(tl)

_t

n,¡(k))\!

110,,U, s)ctr d.s

j

+ h,D

I',, d,,

Ílere Jor

(x,,

),j,

t¡)

e

{l¡,

d¡¡(r,

s):

(1

- /)(t -,)ü(", f

rtt,

f

s/¿)

*

1-

r(I -

r)

ü(r, t

_F r/t.,

I

sh)

|

rsþ(x¡_1 1_

rh,

;v¡_r

*

s/4

*

J-

(1

- r)sþ(x, I

rlt., .;t,_r

l-

r/r).

t_!,!:,:)'ii

,t!), - [-,

sorneof

theterms,ltrreright-hanclsidearezero.Rettrr- ntrg to il'ay U

u'as extencled beyoncl (4.5) arcl

ta$1s into

accorurt f),,, u,c get the

r,iplchitz"orrlirr.rity

:

or urandäe

(,1.q

1.,1. ,] tut,r*, v,

t) þ(x, v) ct:v dv

í,4.7) h

<

Ch max lþi

f)

Norv,

(4.8)

Sirnilar

consicler¿rtions

take

place Tor

hD

q,;((1,¡(/t))

ct¿¡: ,,'b'

^,:H.', ,e,;(J¡¡(tr))

d,,

:

d_l N(j)_2 N_l

: -

Jt, j -t i -n(jl

D n D.ç"(Uø(/r))

(,t,1, 1-

hD

j=t s,((ju¡¡-,,¡(tr)) ct¡¡1¡_1,¡

_ -

g "(U,,(jt,j(/r)) J,,t¡t,¡).

h'Ð ç,¡(u aft\

d¡.

,O

:

Ir; u e L'(0,

T

; Bo), 4 = L'(0, l' t

Br)1,

0 < 1 < fcc,

.þ, ,l

>

1.

I1

lve endow

l( with the

norm

itatry,ç6,r t

nll rill,"*,,,",,,

, )r(o) 00

! !

)t¡(tt)

tt,\\0,,,,,

s) dr ds

D

l' ut

U .s d,r ds

{

Crh

urar

l,.f l

o

So

if

u'e

takc

jntc¡ accoLtnt

the

continuous imbedding ã3(A)

C

Cl(O)"

estinates

(4

6) -

(4.8)

prove our

theorem.

5.

Conlelgonce

oI tho

tliscrcte solution

l'his

section colrtajus the main result

ol

the paper Tornulated i-n'-[heo-

retn

=-.2.

We

also gir,re

here

sorne

lunctional analytic results l'hich

rve,

neecl

in our

proofs.

Consider

three Banach

spaces

F6,

81,

Br, satis{ying the

lollorving algebraic

and

topological inclusions:

BoCBCB,.,

llo,

B L reflexive.

I'et

lØ becomes

a

Ban¿rch space

(obviorsly

W

CL'(0, T;

B)).

r,Dr,IÌ\,IA 5.7. Sltþþose tJte imbedd,ing Bo

( Bt

øs comþøct ond tJtql

I '<

1þ,

q

<o:.

Tlten, V¡r

ç L'(0, T; B) is

also cor'u,þact.

For the þroof

sec

ì,ions i8l.

(8)

ôr) ERVIN SCHECHTEI{ 74

r,Eì{r,rA 5.2. Søt'þþose

,l €

Ð(O

x [0, T[).

Tlte'n

for

lt,,

r

sufJ'iciently (õÇ,

-7p.(u) i, -

7p,(u)Ç,

+ãil)

ctx cty ctt 'l-

* [;,@, y)

Ç@,

y,

o) d.:v

'ty :

o.

l)

,Herc U is a solution of (2.1)

-:

(2.3).

Proof

.'

Recall

that,

e.g., r1.,, is

the

(0)-extension

of

(tþ,)¡7(/e). -tllultiplying each cc¡ràtion

of

(2.1)

bythe

corresponding

valtes

of {., i,veget after sumlna-

tion

:

h

r tù

| Ð lur(¿) -

L,^

e(u(h)) -

o(n) I .¡(r,)

:

'r.

rreuce

if t

is

t"o""tr"

,-a11

that

,1,(1q

:

0, h,7

15.2) ,h,D D o:o tu,(¿)

,1,,(,1)

-

ç,((l(/t)),1,"(/r)

- e,(t/(ir))

,1,,(/,)

-

o;l_

-

o(h)

ü(¿)l

-t-

tûÇuo,l,(0) :0.

,\ou' if /t, t

are so amali

that

supp

{i,

supp

ü,,

suPP,.l.',

çO, X t0,

7'[,

{5.2}

becotres identical

to

(5.1).

r,Dln{A

5.3. (I,ions l9l)

Let

D

bc ø bounded' d'oma"in iu' W" ctn'cl I'L¡,

lt'

e

'-: I-"(D), þ > l, j : l, 2, .

S¿r,þþose that:

i,) llu¡ll¡=Cj:1,2,

¡.cith, tJ'tc consLnnt C ind'eþendent oJ

j.

1't'¡ -t 't¡ ø.e' Oft' I) '

-7

'r.t, 'aenkly in, L"(D) swall

{5.1)

iii)

','!'Jt,cu,

r,rìrn,rA 5.4. Sr't'l>þosc

that

,D

C R"

'ís

ø

bounded' d'ontøin' an'd th'at tke

::;t.(lu!:¿'tce

{"¡} CC(D), j : l, 2, ...

h,as t}t'e Jol'l'ozui'ng þroþerlíes:

i,') -; lu¡lSC i-1,2,

1ii) u¡-t.

1,1, &..e. on D.

(iii)

ihere'exists

q> |

such tlt,at w

= L"(D),Then

the seql'Lencc.contøirt's

,,.

trrbstqutrt,

tonurrgrlnt'in

L(D) Jor

any

þ'fl, {øl'

art'd tlt'e

limit

tt' e

,n I-'(D).

15 rtslE GENERALIZED soLUrIoN 87

Proof:Thepreviouslemrnaensllfesllnalu¡-->.ol,r,veaklyfuL,(D|.

Because ót 1;¡

ttr"t"

is a subsequence {ø¿}

C

{u¡) such

that Lt¡-'L!,

weaklY

In L'(D),

fo nð' u e À L'(D).Since there

exists

a

constant C,

þ>- |

in that

llrrlí,;

< C, it

follows

that

tt'

= L'(.D)'

accordinf

to

Egorov's theorem

thcre

exrsts a slllall

m D

such lirrut

ur-' ø

uniformlY

on D\Do'

Thus for þ

>-

l:

a

\ ", - rt,' d'x:

\ ", - u'

ctx

*

\ lt, -

1't'' dx'

-D D,/ DU DO

Since

U,",- u'a*)'t' = ()"",

rlþ

f .)

dx II rlþ

p d

,tt Do

the

sequence and

the

absolute

continuity of

the

u

in'

i'1n¡. In

what follorvs a

llar

over t1-re sub-

,:"i;:i

subsequence' ('i) Con'd,ition

(A)

lr,ol'd's

(ii) u, is

Liþsctt'itz continuous

in øll

aøriøbl'es

(iii) U is

tlte solution of þroblem (2.1)

-

(2'3)

(iv)

(ct,t, Q) køs tke þroþerty (P,,)

or

(P).

Tlten

tlwre

cxists a subsequence

{k, ,} < {k, ,}

and. a f'tttr,ction

u = L'(Q),

ôu ?' o L,(o\ vtch

lJ¿at

;

(il

k,,(UrD'

I) in, L'(Q)

for q e [1,

co I

(jil

@JU¡,)r'

-' 'u:, @,(ui))' n

ôJruectltl')'

i'n

L'z(Q

(jjì e(Û,,)+-ü

a..e. crucl

u 2 0 a'e'

on Q'

ProoJ'; Ileca11

first that u

has been defined o11

Qi

and

the

extcnsion

u,

a.s,o

ón t0, 11. From

Theorem 4.1 and.

(ü)

we have

the', that

:

(5.3)

'c/ù

2

(e,(u)z

t

e,@)2)

<C

'

Consecluently

taking iuto account theorem

2'1

, lor a cotrstant Cr

we

get : (5.4)

I

0;

(q(U)')' * (q"(U)')' I (ç,((l)')')

d'x dy dt

<

Cr

(9)

88

alld

also

(s.5)

((p(U)')'

-l-

(ç.(t/)r'r)' I

(ç"(U)e¡)z)dx dy dt

<

Cr

Qt:'

Here Qif

is the

rectangular

domain

generated

by the

mesh-points

of

the

set

denoted

in the

same way.

Fronr

(5.5) \\¡e get

for

a subseqtlence

of

indeces

{k, r}:

q((l¡)'- a, e,(Ul,)(r)* ur,

eu(UT,)ot- az,

weakll' Á

Lz(Q).

Now,

accotding

to

Theorem

3.l:

,p"(LI;)'- ut,

gu(Uí)'

n rr,

rveakly

fu

Lz(Q).

On

the other

hand,

(s.6)

(ç"(U))r,r

: þ#

rvhich iuiplics

(ç,(u))r,r

:'+

âu

òl

77 THT GENERÀLIZED SOLU'IION Qi)

Mot'corcr

if llterc

cxists ø cott,stant øo

2 0

such

lltøt ç(x) >

x

for x ):

xo'

lh,ett,

h,)

U;

+

u,

i'n

L'(Q)

for

ønY

I <

1,

< -lrc.

Proof;

Suppose

u is the lunction of 'Iheorem 5.1 and u:9-t(!)^

Clearly, "(i), (l;)-hold. Since

1)

é I-'(Q), tt = L'(Q)

and

bv femma

5'3

Uu-

u weakly

Á

L'(Q), which proves

(i,ii). 'lhe

solution

U of Q)) -

(2'3)

uoiirfi",

(5.1)

lor { = ø(o x [0, rf) and

ft.,

t sulîiciently

small.

Si'cc

ËRVIN SCITECHTER 16

u

(iií)

U;

-r

w.¿ucttÌtly

in L"(Q), I <.þ <co

a.n,d. n..e

. lt, r-,0

i@, l,0)-'ù(r, y, O), ''iTor'rly in strictly í'terior

domains,

\\'c

stc

itbt"-(S.Í¡ iL'.i. iake'into

account

(ù, (iù,

tlnat

u is a

solution

ol

(1.'l).

Finally iÎ

q@)

2 I for

v,

2

N¡,

then

19 '@)

l.x,

so

that qt(x)<xIxo,Torx20'

l'his

implics

that

n-t191L'¡)')-'

't¿

in L"(Q) lot

a:n1'

þ e [1,

-f co[.

{i. Initial a¡tl

hountlar¡i contlitions. Liniqnncss

oI

aproximal'ing sequcrrúc"

LrtIr{A 6.1. (I'ions

kSl)

ry X is ¿ L'(0, I'.;

X'¡.'.

a¡¡alZ t;10, 7';'x), t 1'þ < ¡,n,

changing

it

õn. ø set oJ rt'easure zero

of ]0,

7-[) ls

coNsrieu¡NcÞ 6.1. Suþþose

u

is the solut'ion constructed,'in Tlteot'¿ttt 5'1

l-lten

u(0)

: ltlr:o

nt'a'hcs sense.

f rrdcecl

iI

n<'

takc in

(1.a)

J@,

y, t) : f'(x, t)fr(t)

u,ith /, e

Ð(o),

Jz = Ø(0, î) it

becomes:

l(, ,o#), r,) - - U+', ¡ù,i:)-U+, ¡,), T;\*

+ ((a,J,), f,): ((Lq(")' Í,), f') +

((a'

-f")' Í')'

This

inrplies

that

equation (1.1)

is

also

fuÏilled in the

sense

oI

clis-

tributions.

Because

ôe^fu),ôe!)=Lr(Q)

òx ôt)

ù*

t)u

âx

ancl also

(jj). 'lhls

completes

the

proof .

Xcxt,"lêt

us take

in

T,emma-íJ,

þ: q:2,

B0

- f1'(O), B: L'\t)), r

>-

| and finite, 81- H4(A). Then by

Thcorem

4.2

anð'

(5'6),

rp(U;)'

ís prccompact in

L2(0,

'1'; L,(Al. Then a

subsecFreuce (clenoted

in

the

tutrì"

.n,oyi

oI 9(J¡)',

converges Lo

u =

Lz(Q)

in I-'(Q).'l'his

enables us to aply

lemma

5.4 rvhich. proves (i) .

this

entails, passi¡g

if

neccssat¡'

to

alro-

thet

snbsecltlence,

(jjj). 'lhe prool is

completed.

Next,

ir,e introãirce

a neit

continnous extension

o[ the

discretc lnnc-

tion [/

definecl on

the

mesh points of Qr,. Namel5'

u; : ç-'(ç(ur)')-

This is a continuous interpolate

of U

or.er the rectangular clomain Qr, ivhich belongs

to

Hr(Ql,).

,rlrrlc,r.Ðlr'3,2.

tln¿r,

the hyþotltcse s

of

Th,corert,5,l , tlt,t're cxisls rt

func-

t'ion,

u - L'(Q), u >0

ø.e., uitl't'

ôq(u) ôr

i)q(u) ây

-

Lr(Q)

such. I.lt,øt

for a

sul.tøble subsequence

of

ind'ices

{h, t}:

(i) 9(U;)'- e(u) in

L"(Q)

for

nny

þ e ll, cnl

(1i)

e,(U¡)'- ry , p,(U¡)'-, 'l:,u

ueahly

itt'

L'(Q)

(10)

90

\\¡e ha\¡e

4:

ryçn¡

i ø =

L2(0,

T;

H-tQD.

ancl l,emma 6.1 can be applied.

with X :

(¡1-1(O)'

--- ÍriË

fãllowing

lemma^ii a

particular'

"as" oi îh"ot"ttt 2.1 hom

r,ions

17,

Vol. IIl.

L''

"n**ro', 6.2. Let

.f = Lr(o,

"; Ht(o))

and. suþþos.e^.Ç2

to

be sufficientl'y ragtilø.i. Then the trøce

fl,

exists ønd belongs to H.'Pp(2.)'

' Nlorrorrr

tke mø'þiiug:

t, * ul,,

H''o(Q)

*¡1ttz'o(S)

'is contitt'uott's' IIere

¡7rrz,o(S)

: Lz(0, T);

H1t2(ôe))

C

¿,(S).

'r'HÐoREM6.:l.IfQissr'tfficienttyregul'ørnttdcond'ition'sofTh'eoremS'l

h,ol,rl, tka.n

u

þossesses ø trøce

ul*

Proof

:

Since 9(ø)

=

H''o(Q),

by

T,emma 6'2' ,p(u)1,

=

¡¡trz,o(S)

C¿'(S).

on tlre

other hand.

q-t(x) < x I

øo so

that

ø1" also

exists

and.

the

trace operator

-'-- is

continuous.

t*'Doonnn

6'2'

søt'þþose tloat

Q

'is sufficiert'tl¡''

"rt-'n''

Assurnn thct't t't'

is tlte

soluti,on

tontirrñíttt in

Theorent' 5'2 øntt ih'at

-tltt

conditions

of

tkis tlteorent, are

fulfillecl.

Then'

uls

:

xat

øn,d

Ull, n

%lr, uniJ'ormlY on S.

piooJ

:

According

to 'lheorem 5.2 there cxists a

seqtlerlce {U,,}

C C ÍU¡j,

n,

:

1,

2,

. . .

,

(Ju

CC(Q)

such

that

(J,,-'" 1'(,

in L'(Q), P e

[1, oo[.

At the

same time there is another seqtlence

V,=

C' (Ç) such

that

Proof

; By

Consecluence 6.1, øl¿:6 exists

ald

belongs

to

Z'z(O)' Using

the

same seçFlence as

ln the proof of the

previous theorem rve get : (Jn(x,

t,

0) --> oto@,

Y)

on Q.

The proof is

complete.

A better

und.erstaãclinq

of

how (1.3) is

fulfilled

and a more precise charac- terizatiotl

of the regulãrity

of

O'is liven in

Theorem

6.4. But first

we for- mulate:

rrrìrrìrÀ 6.3. Suþþosr

o q

R2

is

ct. bound,ecl dont,øin such thøt .its fy.2n'

iltr ilili

diuictcdinh.¡lnlte õwmber

of

arcs whose tangents ntah,e witlø eitker

Ox or Olt

a.n øngle greøtev thø'n_ø þositiae constønt.

Then

for

an1, fwnction

V: Qr,nR

ønd,

øly

sufficientl'y sma'll

r <0,

thcre c:vist constanis

A

q.nd

B,

indeþendcnt

of lt, t,

such

tkttt:

rtûf,T/,(h)

=

ArzrtøzÐ w?,Øl 1- v?(h))

)- Brhr D

z(¿)

s,,h s'Jt

19 TFIE GENEI{ALIZED SOLUTION 91

(6.2) Here

S,r: Qill S,,

S,

: {M e

Q', d(X't, S) S z},

S¿: ll¡ x {1, 2, "',K)'

'lhe þroof is given

h l2l.

THDorìEt'r 6.4. Suþþose

Q

satr,sfies conditions

of

Lemnta

6'3'

Assutne

thøt tt,

is

th.e soløítion, obta,ined.

in

T'h,corent,6.2. Let

r = cQ) be a

Liþscløitz

contin'trou,s fun,ctiott. sot'clt, that :

l Z0

tt'nd

Jl":tt','

Tlt.c¡'t (6.3)

that

(6.4)

ERVIN SCLIECHTER 1B

(6,1)

since accorcling

to

Theoren 6.1 the trace operator

is

contil1t1ot1s:

V,l"-"

ør,1"

in

I'z(S)

which

implies

in vierv

o1 (6.1) :

(Jul,* ul, in

¿'(S).

on the

other hand

u,

being

fipschitz continuoÍs

and

by the way

u2 was corrstructed, Uul"

*

ü1, urriformly.

,r.FrrloREM e',á.

¿.t'*'ore

tha.t cond,itions

"J

Tkeorern 5.'2 are foilfilletl' 'fÌøen øtl¡:s exists and,

(i)

wl,:o

: 110 x =

{)

(ùi)

Uf

(x,1,,

0)

*

tto@,

y)

uniJ'or'mly on Q.

t-(

(,"(rt\

-

<off))2 d't' d1,

fl,¡* 0

¿.s

¡-o

0

,. ] tvt-l Y\Jtt -"'

s,

Proof.. As in the prool

of

Theorem

6.2

\ve use

the

seqtlence

lu"\i:r.

Recall

tltat

(J,,

= C(Ø

and

U,,-,tt. in L(Q)' y,=@'.

.

l,et {Í*}

be the'ðótt"spotrding' secluencè

of

discretizations

of

f .

.f¿rtrì1'tnat

(6.3) is

troi ttu".-lheir

there exists a constant C

> 0

such

r-

\øfù -

eU))' dx ctl, ttt

s c,

S,

for a

sequence

oI

numbers

r',

convelging

to

0.

According

to

(6.2) :

-ctù\ (p(u,) -

,?(f,,))'

s Ar" rtÊ;'^, t(p(u") -

q(f,,))",

+

s-rr, S rh

-1-

ç(u,) -q(r"D?l ], Brhp {e{u") -

,p(l;))'.

lt 1

max lU,,

- Vrl <:

,

-11a

7L

i

2

ç i

(11)

EIìVIN SCHECI{TER 21

tel

i10l

tl l l

lt2l

tls l [14]

TLIE CENERALIZED SOI,UTION 93

o9

lìnt

lzr,

- f,l < I-r,

so

tltat

'-Ð

t' sth

(*(u,) - q(Í,))'s

Dt',

Ð

indepcirdent

or

h,,

r, t' (atd

n).

Conscclucntly

for

?

<

/,

+ \ t'etu")' -

e(-f")') rtx tt'Y rtt

3 I{,t'

sr\sp

/(,

harring

the

same properties as 1(.

Norv l<:tting p

- 0,

s,e gct

O l e i rr i k, O. 4., I{ a l a s h n i k o v, .A.. S., C h o * I' i - l i t, .Equ.ation' of the,on- station.ary fil.tration tyþe, Izv. AN SSSR Set. IIat. ¿í (S) 461-469 -(1958, iu l{nssian)

I{ rr s a rr o v, lVI. A,., I-he stucly of lhe d.iJferen.ce method for t}u: sç¡y¿¡on of a þørabolic crluøliott uítlt. degenerecy, fz-v. AN Azerb. SSR, Ser. Iriz-'I'eh i IIat. no. 8,27-Bl

( 1s81) .

S c h e c 1r t e r, D., 'fhe conuergence of the cxþlicit tliffcrcnce aþþroxim.øtion to solue the Cauclty-Dirichlet þrcblem for non-lineat'þaro.bol'ic cquations, Mathernatica, vol. Pl,

67-8r

(1979)

S c lr e c ht er, Ê., On u,lion bolic eq¿øtio,., ¡.ev.

il'Analyse Nurn e cle ll, 89-97 (1979)

Sclrelrchter,8., 1? cyical t.þaraboliccqua,ti,ott.,

Stndia Uuiv. Il XXV

Sclrechter, D., Sottte þroþert'ics of a n.ot'tlitt,car þørøboli.c differcttae s¿,l¿¿rz¿, Iìer..

cl'Arrall'sc Num. ct de la Théorie de l'Approxirnrtion l. 10, no. '2, 22õ -282 (lg9l)

lìeceiYed 5.III.1983,

IìLrcultûtce, de À'[at¿nt,aticã U c r s ilateq, ß abe; - B o1,1, a.i

slr. I(ogcílniceanu Ny.l 3100 Clu.j-Naþoca

1

,

(p ( U,)

' -

9(f ,,)')" d x d.t, dt

!

I{ ,"

Fina111' Tot /t,,

a--,0

(r't,

-'

co),

' [ (,, /)'lt'

r/t, rll <-

Iirr,

'i'

rvhich contradicts (6.3).

Remark 6.1.

The

existellce

of the

lunctiorr

f is

ensured

by

condition

(P)

. This condition call i)e

\\'eakerled b1'supPosing

that zi, is fipsclritz

continuous

as it

\\'as

proved in

1.1].

THEoRTìI{

6.5.

The wholc sequen.ce

U;

tentls

Jor lt,

-'-,01¿o llte otuique solulion

u,

þroaiclcd, tJtcLt cotoditiort.s oJ 7-hcoret,tt, 6.'2 arc

flrlfilletl.

This is immediatcly seen Trorn tl-re rluiclculrcss oi the

limit of the

sec¡ren- cc

,

1t.

IìIlIrDRl.r)NCDS

[1] A I o r]. s s o l, O., Dxlcn.sion, of functiotts satisflti.ttg Liþschil': ct¡ld,il.ions, Arkiv lör ]latc- rnatik, Il6, nr 28 551-561 (1967).

f2l CorrLarrt, R., Irrierlricl.Ls, l{., Lcrvl-, ÌI., Übtr dir fartitllcn Di/,',ren cttglti- ch.ungen. d¿r tn.alhttnalíschen Physl.h, Ilath. Arrn 11.100, 32--74 (1928)

[3] D c s c 1o rr x, J., On tllc e(lxt.atiolx of ]]oussintsq. 7-oþics in, ttuntct,tcrl anall,sis, III, 81-102. Acaclcnric Press (1976).

['1] It r i e d ru a n, t\ , Pnrlial dtfJcrential er1'ttalìous ol þarah, lic Íyþe, Plentice-Il¿rll, Jlrc.

(19(ì4)

f5]I,acl yz.hetskaia, O A, Botnt.iløry-ualue þr';l,l¡lnsoJ íhct¡ta.lltctnatical Physics, Nauka, l{oscol' (197't, irt Rrrssiarr).

[6] I,acl yz,hen,skaia, O.,{., So1o,rnikoi., \¡. t!, Ur¿ltscva N.ñ., Li.near

ønd cuasilinear equaliotts of lhc þatabolir 11,75a, Nauka, lloscol' (1967, in Russian-

[7] I,ions, J. I,., ]Iagenes, IJ., Prc,!èmes aux límites n.on honrogencs et aþþIicati.ons"

\/ol. I, II, Dnuocl (1968).

[8] I, i o rr s, J. I. , Quelqu.es n'tétltodcs dc résolttliott d.as þrol;lèutts (rL!tv lilltLlcs ttott. l.inóa.ircs,

l)unocl (1969)

Referințe

DOCUMENTE SIMILARE

That is why, in Talisse view, the argumentation of Habermas’s theory concerning the legitimacy of political decisions is circular: “it justifies democracy only to those who

fn this section r,ve apply Theorern I and Theorem 2 to absolute Borel sr.mmability.. Orlr result is the

approximate, solutions, théy reniain valid-for the whole of the seçluence, in view of the uniquenss of the exact solution. According to the

For the quasioperations the interval arithmetic is not inclusion mono- tonic.. \Miss' Berlin ected with inversability of complex ervals) is the scope of the

The evolution to globalization has been facilitated and amplified by a series of factors: capitals movements arising from the need of covering the external

Using a case study designed for forecasting the educational process in the Petroleum-Gas University, the paper presents the steps that must be followed to realise a Delphi

International food trade and foreign travel are increasing, bringing important social and economic benefits. But this also makes the spread of illness around the world easier.

Then if the first experiment can result in any one of m possible outcomes and if, for each outcome of the first experiment, there are n possible outcomes of the second experiment,