• Nu S-Au Găsit Rezultate

View of A new class of linear positive operators of Bernstein type

N/A
N/A
Protected

Academic year: 2022

Share "View of A new class of linear positive operators of Bernstein type"

Copied!
7
0
0

Text complet

(1)

"r72 IÙE,NES:T DAI\TI 1,4 Àf S1'l IE ]ì.I. DE ì.f A'r' ICA. 'TIIÉORIE I)]1

-

l'.E\rUE D, I,'ÄPPIìOXINIA'TION:\NÀ L YS E NUIIÉ Iì IQ UII

,L';IN.{LYSB NUmúIìIQUII BT LA THÉORIE ÐE L'Apptrt0XIMATION

Tome 17, Nio

2, lfl88, pp. ll3-124

tor the arbitlation

ga

of uavoff. onc obtains

-

o.g"6o,

i.+rz,

2.07711

of

the c.g., considered

chapter VI t1l).

RI'FERENCES Ä NIìW CLÂSS OF I:INEAR, POSITIYE OITEF,ATOIiS

OF RT)RNSTEIN TYPE

L l) ¡rrr l, Iì., ùlelode nun'rcrice ln Leorìa iocurilor (Nanterical I'Ielll.,tts in Game 1'ltcotg)'

litlittrla Dacia, Cluj-Napocn, 1983'

2. }) a u i, Jì', Numerical l|4ctltotls in Ganrc .Iheor4 ('!clcLety4y:9:Gcncralized Cìlassical Coope-

' ,1,,i¡r, Go^r, St,t¿i" Univ. Brbeg-Bolyai, Oeconornicî' YIiXIJI' e' 1938'

3.ìDjtrJrin,G.N.,S"r¿or,'v.G.,-Yuetlenieupriklactnuiulcoriiui¡¡r,Iz.dNauka'

J\[oslcva, 1981.

4. OdobIe ja, St., Psyclloloç1ie consonanlis[c, I, II, Libr:air'ie x.Ialoirre, Par'is, 1938, 1939.

ó. owcrr, G., L-eoriaioeurilor (GameTlrcory), SetiaBazcleuratematicealeccrcetãriiopcla-

!iorrale, Iìditru'a 1'ohnicir, Ilucuregti, 1974'

Iìeceived 10.III'1986 [JniuetsiLalett Clttj-Napoca Facullatect de lVlatemrtticd çt ltizicå

Str. IhgãIniceanu, No. 7

3400 Clui-NaPocø Românla

BIANCAMARIA DELLA VECCHIA (NaPoli)

Somrnario.

In questo lavoro si introduce e si stuðia una

nuova, olasse

di operatori

ìins¿1i

e po$itivi di tipo Bernstein. Si

ovidenziano xìumeÌose proprieta- e si dimostrano alcuni teoremi d.i convergenza.

Abstract.

fn this paper

a, new class

of

lùrear

positive

operators

ot Bernstein t¡re is

introd.uced and

studied.

several

propertios

and" some convergence

theorems are

given.

1. Iutroductiou. Let

;l'

be a, oontiruous fuletion on f :

10,

l-l (/e

Co(f

) and

denote

by

(SiÍ)@) the corresponding Sta,ncu

polynomiálof

degree

¿. It is well known that

4 p?,,r(n) llf ,-ø)

(,Si/Xø)

: 8Í(/; n) : En r )' neN

and.

øe

.fl-F

0 m

whero

pi,r@):

n

k ntn'-,)(L

-

n)lø-e,-ø!, # e

I

and

ütk,-a)

u(n

I n)

. .

.

(n

-l (k -

1)ø).

This operator

was introducecl

in [16] anrl

ßtudied

in tg

-11-rL7

-201.

.- {oregver, from Bi

operator onc can

obtai i [17], aslimiting

cases,

the following two

operators :

1)

n'avartl-Szasz-Mfuakyan

operator

Mn

M,(l; û):

s-nx

Ar#, (*)

with ø ) 0 antl

lf(æ)l

:

O(ns'),

whero p is a positivo arbitrary

fixecl

number

14, 7 r 13r 22, 24).

(2)

714

uniformly on 1,

V c(,

:

ct/n

:

0(n

In

[1-0]

Mastroianni

ancl operator :

BIANCAMARI1\ DELLA \¡ECC}IIA

-z¡

ancl

Vf

eCeQ).

Occolsio introducecl and

stucliecl

2 A' NIÌ\,l¡ CLASS O[' LINEl\rl POSITIVIJ OPERATOF'S r.15

2) Baskakov operator P,

p,ç; n):

å, (" * ,:,-r)_J.*r(+)

wil,h ø ) 0 ancl l/(ø)ì :0(eß'), vhere p is a positive arbitrary fixed number

11,

6,23f.

It is well

knorvn

that SÍ is a linear positive

operator

verifying

the

following relation

[11] :

ttf# siff; n) :

Jtøt(n),

n> p >

o

B;tt"Í : f'nl,

from

(1.1),

u'e have

also

B;tl'l:r,nf, vÀ>0.

rrinally, a positive

again opelator.

frorn the definition, ii;

follo'rvs

thab, if

), e (0,

11,

¡sÍi,r is

\rorv we want

_to-

rglre¡en]; SÍ.i

(V

),e

-Z?r)

in a matrix

form.

lile

clc.note by,

sl ul{ ri tlìe stirling-'numbers of'first

ancl second t

tili;

respectively, clefinetl

by

nttt,,,l

- 4

1

,

BtlrtL-ttlf â,trd #?,

-

. s,jn(tt-iJ4lri, V lr,e

IJ

ancl, n,

¿

L the

Being

(2.2)

0,4

,11,

: til-l-

nh-t

17- ,l-

E

o

j ii

1

ì I ,l

Si,r$; n) : lr - (r -,SÍ)l(/

;

n) : É,

t

-t)'-' ( 'i)

rUrr'rt, O

where

/c

is an integer number greater than or equal to 1

ancl

(,ï)t

is

the i-th iterate of

Bji

operator

definetl

by

(BÍ)t : Bf

ancl

v i > 1

(S;:)n

:

BíÍ(SíÍ)'-1, ((Si)o

: /).

BÍ.r is not

posil,ive

in

general,

but,

n'hen

/ is sufficiently

smooth, S,i,,,

approximates

the function / better than ñ,,/

[101.

'Îhe airn of this paper is to sturly l,he follor,ving rnore

general nperator

(1.1),s'i,À(/;n): tr-(r-E)t^(/ ir): Ë,, t)'-'(

1)tsÐ'Cf ;

rt

with /e

Oo(1) and. u

e

R-t.

We

point out

many properties

of SÍ.i

(Sections

2

a"nd 3).

Finally, in

Section

4

rve stucly the convergence for nb -->

@ anil

À -+ oc, separatelyo

P.

Genelal properfies

of SÍ,r opertrtor. BÍ.^ operator

clefinecl

by

(1.1-),

for a : 0,

coincicLes

with 3,,,i operatol,

inl,roclucecl

ancl

studietl

by Mastroianni and Occorsio in

i121.

In

pa,rticular we have

ñÍ,r : ñi,

BÍ,r

: ,SÍ,

,Bíi,r(/; 0)

:

"f(0),

,Si,r(/;

1) : /(1)

and.

(2.1)

Sfl,¡(e¿)

: e¡, i : Ot1-¡

þ,,(u)

-

at', lt, e

N).

So

¡SÍ,a

has

exactness

degree l- ancl interpolates the function / in

0

and

1.

We

d.enote

now by L*f

Lt.e l,agrange

polynomial interpolating the function / on the knots !, i : }rL, ...,

tr,.

n

One can

verify

easil¡'

that,

y /c

2

1,

it

is

T .D

,."., ,wh IL

r,r,he.re

[0,*, ...,-'rrtr) is flre

ctivictect

differe'ceof order Z, of

flre funcl,ion ø¡,,

with

respect

to the

nodes 0,

!,

. .

., t . We recall

norv

that B,/

can

be

expressecl,

in the

follorving

tä"- tt6i

(2.3) *i(l

;

n):

Ë, ^{r,ñú,-o'tlr, *,

. .

., *

,

,l

with

l(k,U nl

"(i,,t

:

11r-"¡r v

/c e -rY,

(yi,o:r).

Ilrom this, b5' Q.Z), lt

follo.ws

(2.+J ,Sfi(ø^,;

rl :

T

1yl,¡nÍ'-*tsf;_y1¡r-t

fhen letting

lùn,-o

fn,-. :

(rt'rt*

;,)

(ü, ¡¡\2'-ø . . , ulk'-"!¡,

ur :

(0t

0,

. . . ,

I)r

e -ED,

(3)

BIANCAIIARIA DELLA VECCIIIA

ltk sl*t

7¿'-1

sÍ1 Te,n:

116 4

antl

we

obtafut (2.e)

Ð ,4 NEW CLASS OI¡ LINEAII POSI'IIVE OPERATOTìS

tt'|

By

bJris

relation,

(1.1) becomcs

(2.10) ,s,,r(/; nl :

Ë,

(

- 1),-, ( l) i Ð,yi,*[o,*, .. ,+;/lx

X hn,-oW*,,,,,t'r,lWl,î,,**rl

: Äoú,rt

u,-.^Yn,,,"{

F,

O

-- q, (¡ì .} "*,,} .

, nn 1t_ , "',

,

1, h:0

("î" ":o),k )

0,

(2.4)

oan

be written

as follows

Bî(er;

u) :

hn,-'oln,oDa-r¡¡*ttrr

Now, letting

Ih'-o : filh'-a) anct

fotlorving [10]' we

obtain

12.5^)

(,S,)o(no,-' ; fr)

:

hn,-o(ln,oDn-r¡¡nDll¡-o)oü"

: : hn,-oM1,,t¡t,-Jh

(V

i

-¡f)

llhe matrix

(2.6)

Nu,rt*,-o

-

In,oDn-t,r¡nDllr,-a has as eigenvalues

the

numbers

-{ß,¡:

-

#4 < t, (i : r,2,

. .

.,k).

Tlt'-ø)

Then, we denote

by

Wn,*,othe upper

triangular,T'lt1T, havÍng

as columns

the

eigenvectors

"t Ñi,iìr,-", fdrmalizecl so that the elements of the

main

cliagonal are

1.

So

it

results

(2.7)

Nn¡¡n,-*

:

W¡,r,oln,,W r,h'*

Therefore

(2.5)

can be

written

as follows

(2.S) (S,)i(t*,-* i u) :

hu-oWq*,'Tl^Wl,l',our

From

(2.8) ancl being

(^gtI(f ;

ù: hoYÍ,r(SÍ)'-1(l o,-.; *¡lo

oL

,-,J

lo^

m såot

1. rl .ç:' ' - ltz

It

V'h,eR'

(0 e n'*)

x

Wr,L:,ou, 0

D*,n: 4

On the other

hand, being

(2.r.1) Ë,(-t),ûì ,)u:¿-,[1 -(1 -,)À]:

q.,(,,

À), vúe(0,

1.1

and,

yÍ,0

( 1,

/c

:0r 1, ...,n,

(2.10)

can bc wribien

as follorvs

(2.12) lf,^Uir): Ë,

^ri,nzä,*(xt À)

Lnnl l-0, t-, ...,]'- ,lf

where

zi,,u( a,

)') -

7 ¿ o, -,,1y' b,r,oT t,o,xl[ n,l,,n'ì-{ t

and

Ir,o,x: Ii(-

æ 1)j 0

{

¡.

I1 (1,,,à¡

is a

c.liagonal

matrix lvhose elernents âr'e *(fi,,r, ]'),

i,

:7,2,

. .

.,

lc.

We notice

LTtat ø7,,t

is a

polynomi¿r,l

in r of

d.egree

not gleater than

/¿, Thereforc, t'"om (2.72),

it lollorvs i;hat

ñ|,x

Í is a polynomial of

degree nob greater 1"Ìaan î?,. -r\Ioreover,

if / is a

polynomial

of

rlegree

not

greater

thnn p(p ç

tz), 1,hcn also 8fi,1

/

is.

R,ecalling

(!.L)j Q.Iz) can

also

be ¡yrit,ten

as

follols

S:i,,x(f ; ro)

: ),

opi,,n(n) E [1(",-ø)]-1

0 n

lc

),

t_n

,(2.13)

where

(2.741

y(n) : Ë, (-

',' (, ì ,) ,ur,' (Í;

n)

(Bi)u(/ j æ)

: i-ovß*lo,*,

. .

.,+; /] x

X {h n, -,W n, ",I.'¡-,LW ;,!,,"u

¡l

Now

we

d.enotc

by IÍ,i the remainder of Bf,¡ operator, definetl by

Ri.x: r - sl,i

(4)

118

So

l.c

have

(2.75) Ríi,¡.

:

(1

-

,SÍi)t

: I, (-

1)' (,Síí)'

'7 ¡\ Nlrl\\¡ CLASS OF LINIT;\R POSITIVE OPÌjRATORS 11g

.PIìOPOSIIfON 8.2.

SI.),

olerator

(À €

(0,1))

1)el.i.fies

ttte

fottoeoing

raltttiort,Vøe(0,1),

sii*t,t.([;

r) _

ñÍÍ,r(.f ;

r): r(r _ ,rxr +,) ^{[]r++ia]^

(8.1) -l*#.]^l ,-', Í", Ít).ff,

v

f

e

c"e)

talt'ere

rr, Í,

an'd,

r, tre

su,itabre poi'u,ts

oÍ (0,J)

generatty d,epe*d,ing ou,

f.

*,u n#uool.

Recailing

ttrc

expression of

(BÍ*r - síi)ff; ø) [16], f.om

(2.13) (síí*r;.

-

sr,,¡)(_r;r)

- -*,., Er[,;,#+,u+l_](,,it)n

*

tlh i'1,

-,,4\

-_ "c)1,,-!_.1 IltL+\, -a)

$u"s.,.,.1,i

-

ñf,7.. has. exactncss_ degree

1.

1\ro'eovcr, âs noticecl before

rl ./ ls oolì\¡o\

'l- tilsb

otrler'^arrcl"¡..(01 l),. tlrerr alno

y is

conve-x

of

fir,s, orrlcr';., tlrc,r,cfole (ñÍ*,.,.

- ,\i,,¡.)(Íi,t)'+

o' V

r e(o,

t ¡."

Then,

b.1,

a

blrco-

i'ctn

suclr

of

LhaL,

Popo'iciu Vre

({t, 115l, rve

l),

r,'an"

tinit ilr'e<' loirìi*

zi.,

,;, lii.r ",i,

Ë

tö,ïl

(SÍ*r,i -

Sä,¡)(l; a,)

: (ñíí*r,¡.-

Síi,¡,)(eri

n)lÍt,

Í2,

Ís) ll,

v

I

e C"(I)

lìccalling

(2.16), (S.1) fotlorvs. Lrrorn (8,1), rve oJ:rtain

BIANC-AMARIT\ DELLA VEC CIIIA D

À

i In

pa"r'iicular,

by

(2.8), j-ù follorvs

Ili,i,(r1 ¡,, - " ;

t;) :

I t ¡, -,,I1' ¡r,,,.,,,

)f

*,n,i,lli ¡,,!,,,.tt, ¡,

ylrq"

^J,f 0,,,¡,

is tire tliagonal matd,r

r.r'hose c'le¡ur¡nl,ri

ât'e

(L

-

^¡li,,r)^,

i:712,...,\t.

The

procechue

given

above ca,n

l¡c

usecl

reall¡. to evaluate

Bä,¡

I.

For

example, r't'e have

(2.16)

síi,t.k,;

n):

n2

| a(L - ,) [ ,å++]^,

Jli,,¡(eri ¿)

- -

BÍ.r((¿

-;r'):; r)-

,.t)(J

-,ùl-lyt1 t I rr(r -j- ")

J

l^,

sÍ,,,("f;

fi):2ç1 -,9^X/o -2,Ltz-,L,fr)

,ur-F t(2$À

- Ðlo++(l _$^)./rrr+

-l- (2Ð.À

- 1)Ål r ï,fn,

where

Ð'

-

(2a

l7)(2a +

2)-1.

Iinallv l'e notice that

síi.r, opera"tor (), e (0,

i )) is a palticular

case of

the

operatol

sä,,,,ç, ù :

,,fr,, (-

1¡,,+r+;

(1) tu¡' $; ,a),

r¿

{

À

{

nt

|

1

Ifo'wevel,^it is

ea,sy

to r.erify thai;,

V ira

)0,

ßä,,,,,r.

I

does

not

colÌ\relge

!o /.

S9, Sfi,7.

is the onl¡' operator of

t,ht¿ clasS '{8Í,u,,r},,eNo

corì\rer.é-

ing to

./'.

3._The pro¡retl.ics

oI

rSä,¡

o¡rcra[ru

(À e

(0,1)). .Ihe follorving

pr,opo-

sitions holtl

:

PROPOSIif'IOì{ 3.1.

S'!,,¡ operrúor. (}. e

(0,1))

lrresetDes th,e cotlcu,-

ait'y (conoenity)

of

etter! order'oJ ihe ,fu,nctiort io'aqtpróuimøte.

COTìOLLA ll

\.

8.3

oriler, then,, V

r

e (0, 1)

l f the

Ju,nctioru

J is

conaer (concrtae)

oJ

,fi,rst ,Sí*r,¡(,/;

r)

1Ir S,,i¡,Ç;

r).

oo)^anrl

if I

e -(0,

1), Llx'n, lr¡, (2.t)

o,ì

urt. tao.o vkin's tlteorem ancl.there-

ltrovecl l¡J' l\[oldovan in 114],

rve

COIìOIrl,Älì\i

8.4.

I;f f is cr I

cmd

if

rtrc s.eqtr,ettce..[Si!.1,(f.;

r)]."

e

(0,1)) i

reusittg¡,"

tlen

llte J:rtncliott,

f is

no,t-cottraú (itcti-cot

_."^.

9"lgl1-1..]

3.*, togethcr s'ith the previous Corollary B.B,

gir.es a clralact,r'rization of functions conr¡e-\ (concave) of

first

orcler, on '1.

"

No\\' \'e

clenote

b¡'

r-,ip,r¡r

the

class

ôf Hrilcler-continrous

func- l,iorLs, i.e.

Lip¡¿t¿

:

t,f

.

C'Q)I lJ'@)

-/(y)l S trln _ ylt').

'The follon'ing proposition

holcls :

Pro preserve funsl,ion

o/.

fncleecl,.

x'e

lec_all

[11] tìrat

Sf!, ancl

thelefore its

iter.ates, 1,he

concavity

or:

the convcrity of

evcl.)r ol'clel

s

(s e tY)

of

1,lié

/ to

approximate.

Þn,

from

(11.14),-if 7r e

(0,1),

also

the function

y is concave

(co'vex)

of olclcr

s, ancl then, b5' (2.l.9)1ÁY,r/ is concave (corwex) ojl

order

s.

(5)

I

120 BIANCAMARIA DELLA VECCIIIA o

PÌìOPOSITION

3.5.

a

:

a"

: o(l)

(ru --> æJ, th,en,

(3.2) /e

I-,ip¿¡r

*

Si,t,l e

lip¡a¡r, YruT-t ancl'

V Àe (0,11.

Proof. Í'et' f be a function el-,ip¡lt, and ø

a'nd' 11 anJ¡

two points on

-Z-.

Then, by a theorem

provecl

in f3l,

also

tho j-tìr iteratc of

Sl,ancu

operator (Vj

e ;Y) e l-,ip¡¡y., i.c.

(e,3)

l/(ø) -l@l <

14@

-y l'' =

(Bíl)i

U;n) - (sí)i (l;n)l < J¿lc -yl*

T'helefore, from the clefinition of ñÍ,r, operator,

by

(3.3)

it

follorvs

lsÍ,,(/ ) n) -sÍ,¡(/;y)t: ìË,t- :J" t)'(1) \J/ ftun' U;Ð - (sÍ)'(/;y)ìl

I <

,A NI'W CLÂSS OF LINEI\II POS]TIVß OP}ìRATORS 72I

< Q^ -1)l\n - yl* ç ,rlllr -

Ul"

Wenotice l'hat, iÎ

o,

:

Q'n

:

0(1), (tt, --+ æ) ancl 7' e (0, 1], then, as otrselyectr -before,

Sf,¡f

converges

unifortnl¡' to ,/ on I ;

so,

in

1,hcsc hypothcses,

1,he converse

of

(3.2) holds

too. r\

simple expression of

thc

rernainclel J?f,7f can also be given.

In

fact,, becausc

Sí,r

(À e

(0,1l) is a positive

operat'ol

with

exactness clegree

1, then, by a theolern

plor.ecl

in l8], tve

have

(,3.4)

tli!,,i.$;

r)),

-t, ,rä,r,(rr;

u)Ï"(E) - - [*,,n #]^/"ttt

Y

f

e C'z(l) ancl

rvith I a

suitat¡le

point in (0,1).

Now,

let,ting

Ð,9(o):

lg@ -F ø)

- g(t)la-1, Dlf : Ð,,(Di-'), (Di,!@):

g(n,)),

y

n e

tr,

V u e

R+

anc-[ V r7 defined on

1, the

follou'ing

proposition

holcls :

PIìOPOSITIOT\ 3.6.'Ilte

seqnen,ce

3.5)

rrDi'S",t(Í

) n)j:

n, 0 { ma 11.,

1t1,

< t?j

À e (0,

7l

ancl n e

I

a ø'i.f i e

s

th, e f oll owt¡t,g nton o [,orr,icity pr o1t erties :

t) Jor

na

--

7

a) if

on, th,e

interon

lo,7)

me Írør"tion,

f

is conr)en (concaue) of

first

and, second, orcler)

tlten tha

seçruence

(3.5) is

clecrea,sing (increasing)

o* lo'=tl'

b) if on

the interaal,

l=, Lz t -

*1tlte/urtcliora I

f

is concat:e (cotmten) of

Jirst

order ancl conaen of

fi,rst

ordet' ancl conuen (concaae)

of

second,

oriler, tlten tl¿e se(fuetLae (B.b) is decrea,sirtg (inct'eositr,g)

*l+ ,t -.f,

c) i.f on

th,e 'í,nterl)a¿

tl - a, If

th,e Jun,ction

J is

concaae (conaen). of

first

and, secoùd ordei^, th,en, th,e sequ,eizce (3.5)

is

d'euea,sing (increa'sittg)

on lI - e,

1');

il\formÞ2

a) i! on ttrc

í,nteroat

10, ) u,,

¡urrrtíon,

f is

cünc(tl)c

(conren)

of

ord,er n¿,

- I LI

a'ttil eonaen (conotr,ue)

of

order

nt

aratl nt'

!

L,

thetr tl¡c rcqtleruac (3.5)

is

deurrusittg (itrr:reasittg)

on.lOr\-9-)!l

"

L 2 I'

h) if

on tlte intet'aal

i L ,- 1 -

(2nt'

-

1)u

l, -

urr]'thn funcLior

f is

concanse

4. ûn

[he eorn,erctcnee of rSÍ,r. Assume

that

L e

(0,1)

and, o,

:

0,,,

: ':

0(1) (ra -+ oo). Thcu, as noLicetl

be[orc,

rSÍ,r

verifit's the

hypothoscs o[

l(olovl<in's blteolem on 1 and

iSÍ.r

/

convergcs 1,o

I unifot'ml¡' otl

11

Vf e

O'(1).

Ì\[oreover,

following [12],

we

obtain the

evaluations :

(41) l/- sÍ,¡/l = ^F,l#+]'J, yreo"e)

(+

2) ilt BÍ,^/il_ å | ;¡lii]^,).(r, ,l#r+ïl^,' ),

y

Ï

e c"Q)

(conaea) of order

nt,-7

cttucl nt, u,ncl contretr (concer,øe)of ord,ernt,flrtlueru tlre sequencc(3.-o)'ts tlccrausittg (inccttsin(J)

oul LJ , t -,r*f

;

t) if on tlte intertal lI - nta,L')

th,c frtnction,

I is

colLca,De (cort'ueu) o,f

ot"iler nt,

- I, tn

a¡¿al ilt,

I

L,, th,en, th,o serlu"ence

(3.5) is

decreasing

(increa,sing) ota

l7 -

ntcr',\).

Proof

. Proposition 3.6 follorvs florn (2.13) ancl frorn a

theolem

provccl

in

[2].

f,lamu,ùt. We, nol,ico

that, for a:A, Proposition 3.6

gives

a

nerv monotonicil,y resu-ll,

for the

sequenccì

!r(8".¡J)1"'t(r)),,

7, e

(0,11,

171,

<

îL ancl ø e

f

Thjs rcsult is

moro general 1,han

that onc cl¡taineil by

Stancu

in

[21]

for thc

scçlncìnce \(13,J)t"')(a)1,,.

Iìinally

1re proyo

PROI'OSITIOII 3.î. Let !(a) be a

piecewise

linear

J'tutction toit'Ír,

at

most u,

-1-

clmnges

of

slope, wlt'iclt, c(t'n occLll'

only at

tlte

ltointsJ-,

'i:7t2, ,..r'tt' -7.

Tlten,

for al|

natura,l nnt"mbets nt,, Sl,m+t,x(J;

n) is

nof degree

nm

a,nil, nt'ot'aol¡ef

,

,SÍ,,,r,(,f ; n)

:

SÍ,,+r,¡,

U;

n).

Proof

.

Proposition 3.? follorvs from (1.1) ancl

flom a theolern

provetl

by

Fleechnan

antl

]?assow

in

[5].

(6)

122

ancl

thc

puncl,ual estirna't,es, V

r

e

¡,

I3IANC.\\]TAÌìIA DELL1\ VECCI'II1\

n(L

-., h*-j;]'), otec"(r)

l'rc¡ttr

(2.1 l)

j lccaJling that, tlicr

eigenYalucs "ií!,,,,

'i :7 ,2,

' ' ',11, are

uot gleatel than 1, I'e

have

tirrr

r,(/i ¡) :

4-',r,-

)f,-Lr,,,,tl'k,,,,,,1'À-,¿ll-L,1 ,,,tt,¡Llr,,.l'(0)

: : å

r rr,

r'!i,

I t' ¡'

-

urlr ¡",,, n('l|' ¡,,,,"1¡,") - ltr'¡Àf)

"/( 0 )

On

1,ho

ottt". tral¿,

ft'orn

(2.7)t itfollorvs

It'¡,,.,n\Ir¡,,,,,,,(Ì1i,,,,,o1'k,o)-r

-

lt't,-ullrk,r,o(::Yu,r,u'ufIIt',,,,")-r

:

-'h, t,, - o Il' r, r, nl|' n,|,,,, Ð k - j, -,,Ð ;1 r,t,,, I ;,!,,

and

letting

f¡, : (r1r, l-;2, ..,r'iltt),

ii,

lesults

lt,¡,-n.Il''¡,,,,n(Iì¡¡,,,,,uf¡,,,)-t-,YxDllt,y,,1-1.å:lt'¡,,r¡rl;,|,

!

So rve c¿r,ir srlit,e

lirrr,9ji,7.(./;,i,)

- f,

n^iü.,,'.''", 1, r,,,,,1,,;,lilil-\f7,,/(0)

7.-æ "ô l; t

-- f

t4" ,-/11- r,{r',t/")¡t,/(0)

1.. I

that is

(4.5).

^ Nlì\\¡ CL¡\SS OF LINIiAR POSI'l'lVll OI'l:llìÄTOl-.S

tìlì1ìrìtìlìNcr'ls

10

il1 123

l,f(n,)

- Si,t.U; ø)l (

2co

(t rll

lÍ@)

Si,,t.ff; er)

l<2 n(r- r,)f t"'i

1

L

r¿(1

f

ø)

]^.' (r''

tr,u

! t

n(r-n) I

rr,(1

f

ø) I

Y

,f'

e C"(I)

\4¡c notice

tìrat, for

¿¿

:

0

in

(a,1) zi,nct (+1.2), rve fincl the

lclations

obtairr-

ed :åi;""'"rllT i:" f*1,"n^i,li'ü;- srudietl

b):

l\Ia in

[101.

So

assutne

thal,'), :i + 8, u'ith

r)

.biggcst

integt'r'

nurn̡cr < ), anrl

ò e (0,

1). then, frorn

(3.4),

it

follorvs :

ltri,ti; r)l

ltÌ,:, ò(Itä.,U;

n))l < j.tttry.,11,,,,,[ # i;]

On the

othcrl

hand,

because [101

llQti;,of)ø

ll (

c(ru

- 2)-'

ll./(') 11,,, Y.f e c2t+2 1r¡

rvltclc

ll/llr, : rìì'àx

ll/(j)ll

ancl

C is a constant

depending

on i antl intlcperrdent of /

a,nc1

n,

u'e

ol¡t¿lin

COIìO],LAIì}:4.2. Let ),:i+ 8,'toitlt ieN

an,d

òe

(0,

1).

'l'hen, V

Í

e C2i+2(1.),

iI

resuLts

ll

t¿ä,,.Ill

(

o, ll /,,) ll,,l

L ry:J I +r,

lo,,

-'-u, n )

2

J Q,ultcre

is rt

cr¡nstant itttlependen¿

ol I tutrl

n.

Filrallt'

1\'e plo\¡o

'I'FIIlOlìlllL

4.3.

I'et

.f e

C'(I). 'Ihen,

th,e Jollotuittg reLtr,tiort' holds:

(4.ri) lirn

SÍi,r(/ )

u) : L,(l;

n)

wtr,ere

L,(J;

a,)

fs

.Løgt'nttqe polynont'iu,l' interpolcttittg [lt'e Ju,nctiott'

J

on' tlt,e

\çvt,o[s

!-, i:0,

1, . . .¡,tt,.

,IL

Proof

. Ililsi, of all, l'e notice that, flotn

(2.12),

it,

follon's

lirn

Á"ji,7(/ ) n)

:

Éo^rÍí,^ ]|-h,,,-,,11'r,n,ul

lim

.Fr,n,¡l'Ilr;,];,otr¡,Ltl¡,,

j. ilrrsliaìiorr, \'. r\., -,lrr ctctnt¡tle of a scrltLcncc of littctu ¡tosíliuc operalors itt lltc s¡:trce

ol' t:ottlinurnrs Iuttt:!iotrs, l)okl. Àltacl. Nauk., Iì:l (1 957), '249-'2õ1 '

Z. lj ctlrr yccchia 8,, On ntottolonictly ol'sonte littcar posilinc o¡tcralors, t6 Ìppt'al in.

..1>rococdilìgs oli [he'I'hil,<ì Co11lcÌcltcc o11 NunrcÌical ]tcthocls arrtl Appt'oxitrration'l'ltcety", Nio:, Yugoslaria (1987),

B. J)clla'i¡ccchil )'l,, OtrlhepreserotrlionofLipscltil:conslrutlslorsotttelittctto¡terllors, stìl)nliLLed Lo .'llollctl-iuo dcÌla l-lltionc ìIatcrnnLica ltaliaua" 11987).

4. a v I l rl .I., S¿¡r' l¿s ttutlli¡tlicaleut s rl'inlct ¡toLutior¿, ,I. ltaLìr. PuÌ'cs '\ì)p1., 9:l (1944), 219-',247.

5, lìr'ecrlnran I). anrl Passorv Iì., I)crlurcrtLle lieuttLcitt. Pol¡¡nontÌtLl.s,.I..\ppt'ox.

'lìheor¡', 3t) (198:l), 89--92.

6. ITc¡i.rran,ì 'Jl ., On l)asltrtlirtu-lypcopcrelots, AcLallalh. Sci. IJung-ar., Jt) (3-4) (1978), 307 31 6.

7. .ll ot o r, á L, ,l nolc on lhc scquutcc fornretl Lu lhc [irst ordct dcrinaliucs ol llrc Szttsz

ù[ira]i¡¡tot op(t Qlot s, IIaLhctu., 24 (47) (1982), 49-ã2'

g. l!.I¿rsII'oia¡¡i G., Sui rcstidialcunc lornrc Liuctu'idittpprossÌntr:iotrc,C'alco)o. llt (1978),li43-368.

S. ì.Ias'ír'oianni G,. Su untt t:lasse di t'tpercrlori li¡tccui c posilioi, ltrrltl' '\ct:acl' Sc' l\{.F.N. Sclic I\:, XLVIII (1980), 217-235.

10. ì,I¿rsl"r.oia*'i (ì. o,rit Occot'sio lI. l'.., UtttL ylctrcralizztt.ziottc dc:I L'tt¡tet uloLc rLi

Slcotcrt, lìcntl. Accatl. Sc. II.lr.N. Selio I\r, XLV (1 978), l5l-109'

(7)

1!24 BIANC^MARIA DELL¡\ VÌìCCIIIA

11.tr,fasl.roianni G. and Occorsio l\,I. R., SuIIerlcrit¡a[edei ¡:olitronidiStancu, Rend. Àccad. Sc. M.F.N. Ser., f,V, (1,978), 273-281.

'12. }{astroianniG. aud Occorsio lVI. R., Attewoperatorof Bernsteinlype, Mathem.

Rev. Anal. Nurn. 'Iheo. Äpprox., 16 (1987), 1, 55-63.

13. Mirakyala G., Appt'oximaLion cles fonctÌons contittues au tnolJeil tle pol¡¡norttes de Ia forne ... , Dol<I. Akad. Nauk. SSSR, 31 (1947), 207-205.

X4. Moìrlovan 7!., Obserualio¡ss¿¿r'Ict suil.erlespolynomes d¿ S. N. Brrns{eittd'unefortctiott contintte, l\{ath., zr (97) (1962), 289-292.

15. Popoviciu T., SurleresledanscerlainesforntuLeslinëairestl'approritnationdel'atrcLyse n,Iath., I (24) (1959), 95-742.

16. Starrcn D. \)., Approrcintalionof funcliorLsb¡1 ct ttctuclass oflinccu'polgnoutielopetetots) Rev. Roum. Math. Pu¡cs Appl., 13 (1968), 1173-1194.

17, S t a n c u l). D., Use of probabilístic nrcllntls in tlrc theoru of unifornt approrcintalion of conlinttous funclions, lìer'. Iìoum. Pures Appl., 16 (5) (1969), 673-691 .

18. S t a o u I). IJ., Approtímalion properties of a class oÍ' linenr positiue o¡tet'aIors, MaLb,, 3 (1970), 33-38.

19, Stancu I). D., Ot llrcte¡na[ndcrof a¡;proxintation.of fu,ttcliorLsby ntectnsof aparanrcter- tle¡tcntlent linear polgnontial operator, lVIaLh.. 5 (1971), 59-6ã.

20. Starrcn I). f)., Approximation of funclions by ntcans of sontc rtea classcs of positiuel linettr opcrulor'.s, in "Proc. Conf. l{atìr. lìcs. Inst. Circlrvollach", ccl. by L. Collatz ancl G. l,Ieinarclus (1972).

21. Starrcu I). 1)., tlppticalion of diuklett cliffercnces to tlrc sttttly of trtottotorticily of lhe clctiurt!.iucs ol'11rc scqucnces oI Bunslcin ¡tolgtrcntials, Calcolo, iC (1979), 43I--445.

22. Stanctr F.. AsupLcL t'cstului în fornLtlcle rle nprorintare prin operalorií ltti X'Iiralcian tle tutttçi tlouà uariebile, Änal. Stud. Univ. ,,4t. l. Crr,a",1/-r(1968), 415-422.

23. S t a n c u ll., Asnpru u¡trot,inú.rii furtcliilor de ttna ;i d.ouä uericrbíIe ut a.iulorttl opere- Ic¡rilor lui Bctslcùtoo, Sttd. Celc. Celc. NIaL., 22(79?0), 531-542. |

24. S z a s z O., Gc¡tcralizctlion of S. Ilcrnstcín's polgnomÌals to llrc ìnfinile ínterual, J. fìes' Nat. Stantl., ¿r5 (1950), 239-245.

Rcccivecl 15.III.19B8

IsIilu[o po Applicazioni deila nlalcnm(.ica

C.N.lì, Napoli, uict P. Caslclli¡to, 111-8013f

1\IATI'IE]\I..\.IìcA

_

IìEvUI], ì),ANI\I,YS]J NUÀIÉIì I QUI]

]]T D}J '|IIÉOI'\IE DI] L'APPIìOXI\{ATION

,I,,aNÀLYSE NUI,IEIìI0UE ET

X,A THÉOFåíE

ilE

I-"{PI¡IùOXIRTATION

ïomo

17,

N" 2,

198{i,

pp.

125-13e

RDPRESENf|ATION OX' OON1INUOIIS TTINEAIì

FUNCTIONAI-,S ON SiUOOTI{ NO}ìMED I-IINEAR SPACES

SEVER SILVESI'}ìU I)IìAGOMIR (Timiçoara)

al¡struct.

rn

this paper we shrùll give some i,heorems

of

r.eplesentation

for the lineär

spaces

by

use

of 1' I and Tâpia [5j,

and

the

iements oif tinãa,ï

subspaces.

pp.

3Bg). I:,ct

X be a

rcal

XxX'K(IR, e) is

called or' ¿-semi-inner prorluct,

12

Introduetion. DTJI¡IìI{ITIOT\

1 (l3l,

[1]

or

complex lineat, space.

A mapping

( , )"

I

,semi-inner

plod.uct in the

sense

of

I_.,umer

;for short,

if the following

condil,ions holcl:

(i) (n*y,ø)":(n,ø)x*k/,ø)¡., ü,ytãeNi t(ii)

(on,

!l), :

a(n,

U)¡¡

a e

I{,

Ø, lJ e

X

;

(iii) (n,n)")0 if r*0;

(iv)

I@, E)"1,

( (r, r)r(y, y)r,

û,

y

e

X

i

(v) (n,)r?it:\(r,A)r, ì,eK, n,y €X.

tr'or

^t_he proporties of l¡-¡lerni-inner product, we ßend 1,o

tll

pp. gq6

_

389,

or l2l

where

further

refe cnces a,re given.

DEIìINITION 2 ([5], t1l pp.

BBg). LeL

(X,

ll

.ll) be a real

nor._

,merl'linear

spacc

andl:X

--+

IR,,f(ø):f

ff

nlp. neX.

2tt""tt t we<.

'Ihen the

lna,pping :

(n, g)o

:

(v+

fl(g)

. æ

: tilg t@Jtvl,

$,

lt

x

i

tJ,o t

{e called semi.inner product

in

the sense of

rapia or

?-gemi-inrìer product,

for

short.

n'or the

usua,l_properties oT ?-se¡ni-inner

product, wo

send. 1,o

[1]

Pp. 389-393 or [2]

where

furthor

rcferencos a-re giveá.

E-¡, 2fZ(

Referințe

DOCUMENTE SIMILARE

, Slack convexity with respect to a given set, in Seminarul itinerant de ecuat¸ii funct¸ionale, aproximare ¸si convexitate, 1985, Cluj-Napoca, “Babe¸s-Bolyai” University

We solve a problem, raised by Paolo Soardi, concerning the shape preserv- ing properties of the Bernstein operators of second kind.. \\¡e establish also a

'I'he autho¡s giyc árr eirsy coustluctive lrloccss and LhcS' pl'o\¡e some ll.tot.tototl¡' properties al1cl.. cortvexiLy

of tire nuincrator is less than th.e degree of the clenominator aud clegrce.. of both numerator and deuominator depends on

In the following we shall stick to some sequences of linear positive oper'.ators, illustrating the generality of the method presented in thc pre- vious paragraph...

The alpha type silicon nitride nanostructured fibers were obtained by hybrid system chemical vapor deposition (HYSY-CVD) method, with low manufacturing costs,

The move towards agent- based environments is supported on the one hand by rapid progress in communication languages (like KQML and Telescript) and standardisation of

Come riassunto in (99d), la prima delle due frasi coordinate (quella che contiene il sintagma relativo) costituisce lo specificatore di una struttura coordinata di tipo (A);