• Nu S-Au Găsit Rezultate

View of Some approximation properties of modified Szasz-Mirakyan-Kantorovich operators

N/A
N/A
Protected

Academic year: 2022

Share "View of Some approximation properties of modified Szasz-Mirakyan-Kantorovich operators"

Copied!
10
0
0

Text complet

(1)

Rev. Anal. Num´er. Th´eor. Approx., vol. 38 (2009) no. 1, pp. 77–86 ictp.acad.ro/jnaat

SOME APPROXIMATION PROPERTIES OF MODIFIED SZASZ-MIRAKYAN-KANTOROVICH OPERATORS

GRZEGORZ NOWAKand ANETA SIKORSKA-NOWAK

Abstract. In this paper we consider the modified Szasz-Mirakyan-Kantorovich operators for functionsfintegrable in the sense of Denjoy-Perron. Moreover, we estimate the rate of pointwise convergence ofMnf(x) at the Lebesgue-Denjoy pointsxoff.

MSC 2000. 41A25.

Keywords. Szasz-Mirakyan operator, rate of convergence, Lebesgue-Denjoy point.

1. PRELIMINARIES

In [6], Z. Walczak introduced and considered some approximation properties of the modifed Szasz-Mirakyan operators defined by

Mnf(x) =

X

k=0

pn,k(x;an)f(k/bn) (x∈R0, n∈N),

where pn,k(x;an) = exp(−anx)(ank!x)k,R0 = [0;∞), N ={1,2, ...} and (an)1 , (bn)1 are given increasing and unbounded sequences of positive numbers, such that

(1) limn→∞ 1

bn = 0 and abn

n = 1 +O

1 bn

.

If an=bn =n, for all n∈N, then Mn become the classical Szasz-Mirakyan operator examined for continuous and bounded function in [4]. Some approx- imation properties of the operatorsMn, for continuous functionsf onR0, can be found e.g. in [1] and [6].

Denote byMnthe Kantorovich type modification of operatorMnand define it for measurable functionf on R0 as:

(2) Mnf(x) =bn

X

k=0

pn,k(x;an)

Z (k+1)/bn

k/bn

f(t)dt x∈R0, n∈N,

University of Marketing and Management, Ostroroga 9a 64-100 Leszno, Poland, e-mail:

[email protected].

Faculty of Mathematics and Computer Science Adam Mickiewicz University, Umul- towska 87, 61-614 Pozna´n, Poland, e-mail: [email protected].

(2)

where the integral is taken in the sense of Lebesgue or Denjoy-Perron. Con- vergence Theorems for the classical Szasz-Mirakyan-Kantorovich operators (an = bn = n) are presented in [2], [3]. Some approximation properties of Mnf can be found in [7].

The aim of this paper is to examine the rate of the convergence of operators Mnf, mainly, at those pointsx∈R0 at which

limh→0 1 h

Z h 0

(f(x+t)−f(x)dt= 0.

The general estimate is expressed in terms of the quantity wx(δ;f) = sup0<|h|≤δ

1 h

Z h 0

(f(x+t)−f(x))dt

(δ >0).

Clearly, iff is locally integrable in the sense of Denjoy-Perron onR0, then limδ→0+wx(δ;f) = 0 for almost everyx.

In view of this property, we deduce that in some classes of functions, limn→∞Mnf(x) =f(x) almost everywhere.

Moreover, using some other properties of wx(δ;f), we present the estimate of the rate of Mnf(x) the pointwise convergence of in terms of the weighted moduli of continuity.

Throughout the paper, the symbol K(...), Kj(...), (j = 1,2, ...) will mean some positive constants, not necessarily the same at each occurrence, depend- ing only on the parameters indicated in parentheses.

2. AUXILIARY ESTIMATES

It is easy to see, that for every x∈R0 and for all integersn∈N , (3)

X

k=0

pn,k(x;an) = 1,

(4)

X

k=0

k bn −x

pn,k(x;an) =x

an

bn −1 ,

X

k=0

k an −x

pn,k(x;an) = 0.

By properties (1), we have that exists a positive, absolute constants K, K1, such that

(5)

an

bn −1 ≤ Kb

n, a1

nbK

n and abn

n ≤K1

for all n∈N.

Forq ∈N0 =N ∪ {0},l∈N0,n∈N we define (6) Sq,l(n)(x;bn) =bn

X

k=0

k bn −x

q

k an −x

l

pn,k(x;an).

(3)

Lemma 1. Suppose that q ∈ N and (an)1 ,(bn)1 are fixed. Then, for n∈N, x∈R0 we have

(7) S(n)q,0(x;bn) =xan q−2

X

j=0 q−1

j

1

bq−jn

Sj,0(n)(x;bn) +x an

bn −1

Sq−1,0(n) (x;bn),

(8) Sq,1(n)(x;bn) =x

q−1

X

j=0 q j

1

bq−jn

Sj,0(n)(x;bn),

Sq,2(n)(x;bn) = ax

n

q

X

j=0 q j

1

bq−jn Sj,0(n)(x;bn) (9)

+x2

q−1

X

j=1 q j

1

bq−jn

j−1

X

i=0 j i

1

bj−in

Si,0(n)(x;bn).

(Note that the symbol P−1

j=0...denotes zero.) Proof. In view of the definition (6)

Sq,0(n)(x;bn) =

X

k=0

exp(−anx)(ank!x)k k

bn −x q

= abnx

n

X

k=1

exp(−anx)(a(k−1)!nx)k−1 k

bn −x q−1

−xSq−1,0(n) (x;bn)

= abnx

n

X

k=0

exp(−anx)(ank!x)k

k+1

bn −xq−1

−xSq−1,0(n) (x;bn)

=

q−1

X

j=0 q−1

j

anx

bq−1n

X

k=0

pn,k(x;an) k

bn −x j

−xSq−1,0(n) (x;bn)

=xan

q−2

X

j=0 q−1

j

1

bq−jn

Sj,0(n)(x;bn) +x

an

bn −1

Sq−1,0(n) (x;bn).

This mean that (7) is true.

Next, assuming (6), we have Sq,1(n)(x;bn) =

X

k=0

exp(−anx)(ank!x)k

k

bn −xq

k an −x

=

X

k=0

exp(−anx)(anx)k!k+1a1

n

k+1 bn −x

q

−xSq,0(n)(x;bn)

(4)

=x

q

X

j=0 q j

1

bq−jn

Sj,0(n)(x;bn)−xSq,0(n)(x;bn)

=x

q−1

X

j=0 q j

1

bq−jn Sj,0(n)(x;bn).

So (8) is true. Hence we get Sq,2(n)(x;bn) =

X

k=0

exp(−anx)(ank!x)k k

bn −x q

k an −x

2

=x

X

k=0

exp(−anx)(ank!x)k

k+1

bn −xq

k+1 an −x

−xSq,1(n)(x;bn)

=x

q

X

j=0 q j

1

bq−jn

Sj,1(n)(x;bn) +a1

nSj,0(n)(x;bn)

−xSq,1(n)(x;bn)

=x

q−1

X

j=0 q j

1

bq−jn

Sj,1(n)(x;bn) +a1

nSj,0(n)(x;bn)

+ax

nSq,0(n)(x;bn).

Applying (8) the desired equality (9) follows.

Lemma 2. For every n∈N, q ∈N and q ∈R0 the following inequality is true

(10) |Sq,2(n)(x;bn)| ≤K(q)

x2(1 +x)q−1 1

b[(q+3)/2]n

+x(x+ 1) 1

bq+1n

,

where (an)1 ,(bn)1 are fixed.

Proof. Using (4), (7) and the method of induction one can easily verify that for all n∈N,q∈N,x∈R0 there holds

(11) |Sq,0(n)(x;bn)| ≤K(q)x(1 +x)q−1 1

b[(q+1)/2]n

Simple calculation, (3), (4) give us S0,2(n)(x;bn) =

X

k=0

exp(−anx)(ank!x)k

k an −x2

= a1

n

X

k=1

exp(−anx)(a(k−1)!nx)k

k an −x

−xS0,1(n)(x;bn)

=x

X

k=0

exp(−anx)(ank!x)k k+1

an −x

−xS(n)0,1(x;bn)

= ax

nS0,0(n)(x;bn) = ax

n,

(5)

and

S1,2(n)(x;bn) =

X

k=0

exp(−anx)(ank!x)k

k

an −x2

k bn −x

= b1

n

X

k=1

exp(−anx)(a(k−1)!nx)k

k

an −x2

−xS0,2(n)(x;bn)

= xabn

n

X

k=0

exp(−anx)(ank!x)k

k an −x

2

+a12 n

+ a2

n

k

an −x

−xS0,2(n)(x;bn)

= xabn

n

S(n)0,2(x;bn) +a12

nS0,0(n)(x;bn) + a2

nS0,1(n)(x;bn)

−xS0,2(n)(x;bn)

= xabn

n

x an +a12

n

−xax

n = ax2

n

an

bn −1 + ax

nbn. Applying (5) we obtained (10) for q= 1. Hence

S2,2(n)(x;bn) = ax

n

2

X

j=0 2 j

1

b2−jn

Sj,0(n)(x;bn) +x2 2b

n

1

bnS0,0(n)(x;bn)

= ax

n

1

b2nS0,0(n)(x;bn) +b2

nS1,0(n)(x;bn) +S2,0(n)(x;bn)

+2xb22

n S0,0(n)(x;bn).

Clearly, in view of (3), (5) and (11)

|S(n)2,2(x;bn)| ≤Kax

n

1 b2n +bx2

n +x(1 +x)b1

n

+2xb22

n

≤K1n

x2(1 +x)b1

n

1 an + b1

n

+x(1+x)a

nb2n

o

≤K2n

x2(1 +x)b12

n +x(1+x)b3 n

o .

Hence for q= 2 the inequality (10) is true.

Analogously we have (10) forq = 3 S3,2(n)(x;bn) =

=

x an

3

X

j=0 3 j

1

b3−jn

Sj,0(n)(x;bn) +x2

2

X

j=1 3 j

1

b3−jn

j−1

X

i=0 j i

1

bj−in

Si,0(n)(x;bn)

(6)

=

x an

1

b3nS0,0(n)(x;bn) + b32

nS1,0(n)(x;bn) +b3

nS2,0(n)(x;bn) +S3,0(n)(x;bn)

+x2 3b2 n

1

bnS0,0(n)(x;bn) +x2 3b

n

1

b2nS0,0(n)(x;bn) +b2

nS1,0(n)(x;bn)

ax

n

1

b3n +Kxb13

n +x(1 +x)b12

n +x(1 +x)2 1b2 n

+K

x2 1b3

n +x3 1b3 n

≤K1x2(1+x)2

b3n +x(1+x)b4 n

.

Ifq ≥4 then, in view of (9),

|Sq,2(n)(x;bn)| ≤

ax

n

q

X

j=0 q j

1

bq−jn

|Sj,0(n)(x;bn)|+x2

q−1

X

j=1

v 1

bq−jn

j−1

X

i=0 j i

1

bj−in

|Si,0(n)(x;bn)|

= ax

n

b1q

n|S0,0(n)(x;bn)|+ q

bq−1n

|S1,0(n)(x;bn)|+

q

X

j=2 q j

1

bq−jn

|Sj,0(n)(x;bn)|

+x2

q bq−1n

1

bn|S0,0(n)(x;bn)|+ q2 1

bq−2n

1

b2n|S0,0(n)(x;bn)|+b2

n|S1,0(n)(x;bn)|

+

q−1

X

j=3 q j

1

bq−jn

j−1

X

i=2 j i

1

bj−in

|Si,0(n)(x;bn)|

+1

bjn

|S0,0(n)(x;bn)|+j 1

bj−1n

|S1,0(n)(x;bn)|

ax

n

b1q n + q

bq−1n

x

an

bn −1 +

q

X

j=2 q j

1

bq−jn

K(j)x(1 +x)j−1 1

b[(j+1)/2]n

+x2K1(q)

1 bqn + 1

bq−1n

x

an

bn −1

+

q−1

X

j=3 1 bq−jn

j−1

X

i=2 1 bj−1n

x(1 +x)i−1 1

b[(i+1)/2]n

+ 1

bjn

+x 1

bj−1n

an

bn −1

!

.

Consequently, from (5)

|Sq,2(n)(x;bn)| ≤

≤K(q)ax

n

1 bqn +b1q

nx+x(1 +x)q−1 1

b[(q+1)/2]n

+x2K(q)

1

bqn +b1q nx+

q−1

X

j=3 1 bq−jn

x(1 +x)j−2 1

b[j/2+1]n

+ 1

bjn

+x 1

bjn

(7)

≤K1(q)

x2(1 +x)q−1 1

b[(q+3)/2]n

+x2 1+x

bqn + 1+x

bq−1n + x(1+x)q−3

b[(q+1)/2]+1 n

+x(1+x)

bq+1n

≤K2(q)

x2(1 +x)q−1 1

b[(q+3)/2]n

+x(1+x)

bq+1n

,

and inequality (10) follows now immediately.

Identity (3), estimate (10) and the known Schwarz inequality lead to Lemma 3. Let q ∈N0, x∈R0 . Then, forn∈N

X

k=0

k an −x

k bn −x

q+1

pn,k(x;an)≤ (12)

≤K(q)

x(1+x)q+1/2 bq/2+1n

+

x(1+x) bq+3/2n

,

where (an)1 ,(bn)1 , are fixed.

3. MAIN RESULT

In this Section, we consider only the points x∈[0;∞) at which wx(δ;f)<

∞ for all δ >0.

Theorem4. Letf :R0→Ris integrable in the Lebesgue or Denjoy-Perron sesnse on every compact interval contained in R0 and let n ∈ N, x ∈ R0. Given any number q∈N, we have

|Mnf(x)−f(x)| ≤K(q)

(1 +x)q+1/2+

1+x xbq+1n

1/2 (13)

X

v=0

wx

v+1 bn

1 (v+1)q.

Proof. For the sake of brevity we will write f(x+t)−f(x) = ϕx(t) and wx(δ;f) =wx(δ). In view of (3) we have

Mnf(x)−f(x) =bn

X

k=0

pn,k(x;an)

Z (k+1)/bn

k/bn

(f(t)−f(x))dt

=bn

X

k=0

pn,k(x;an)

Z (k+1)/bn−x k/bn−x

ϕx(t)dt

=bn

X

k=1

(pn,k−1(x;an)−pn,k(x;an))

Z k/bn−x 0

ϕx(t)dt

−bnexp(−anx) Z −x

0

ϕx(t)dt.

(8)

It is easy to see that

x(pn,k−1(x;an)−pn,k(x;an)) =pn,k(x;an) k

an −x

.

Consequently

x(Mnf(x)−f(x)) =bn

X

k=0

pn,k(x;an)

k

an −xZ k/bn−x 0

ϕx(t)dt.

Applying the obviously inequality

Rh

0 ϕx(t)dt

≤ |h|wx(|h|), we obtain x|Mnf(x)−f(x)| ≤bn

X

k=0

pn,k(x;an)

k an −x

k bn −x

wx

k bn −x

X

v=0

Tv(n)(λ;x)wx((v+ 1)λ), whereλis an arbitrary positive number and

Tv(n)(λ;x) = X

vλ<|k/bn−x|≤(v+1)λ

bn

k an −x

k bn −x

pn,k(x;an).

We shall estimate the factors Tv(n)(λ;x) for v = 0 and v ≥ 1, respectively.

Clearly, in view of (12)

T0(n)(λ;x) ≤bn

X

k=0

k an −x

k bn −x

pn,k(x;an)

≤K

x(1 +x)1/2+

x(1+x) bn

1/2 .

Next, if v≥1, we have, by Lemma 3, Tv(n)(λ;x) ≤ vbqnλq

X

k=0

k an −x

k bn −x

q+1

pn,k(x;an)

K(q)vqλq

x(1+x)q+1/2

bq/2n

+x1/2(1+x)1/2

bq+1/2n

.

Now, takingλ= 1/b1/2n , we easily get x|Mnf(x)−f(x)| ≤

x(1 +x)q+1/2+x1/2(1+x)1/2

b(q+1)/2n

· Kwx

1 bn

+K(q)

X

v=1

wx

v+1 bn

1 (v+1)q

! .

This last relation is equivalent to (13).

(9)

Remark 5. Let Dloc (R) be the class of all functions integrable in the Denjoy-Perron sense on every compact interval contained in R. Clearly, if f ∈Dloc (R), then the function

F(x) = Z x

0

f(t)dt

is ACG on every [a;b]⊂R0 and F0(x) =f(x) almost everywhere [5].

Consequently,

(14) limδ→0+wx(δ;f) = 0 a.e. on R.

Suppose that f ∈Dloc(R) and that

||f|| ≡sup−∞<v<∞

sup0≤u≤1

Z v+u v

f(t)dt

<∞.

The operators Mnf(x) are well-defined for all n ∈ N. This follows at once from the inequality

Z (k+1)/n k/n

f(t)dt

≤ ||f||.

In view of (14), given any > 0 there is a δ0 > 0 such that wx(δ;f) <

whenever 0< δ≤δ0. In case δ≥δ0 we have wx(δ;f)< +|f(x)|+ supδ0≤|h|≤δ

1 h

Z h 0

f(x+t)dt

≤+|f(x)|+δ1

0||f||

provided that δ ≤1. If δ > 1, then putting µ = [δ] + 1 and xj = x+jh/µ (j = 0,1, ..., µ), we get

Z h 0

f(x+t)dt

µ−1

X

j=0

Z xj+1

xj

f(t)dt

≤µ||f|| ≤2δ||f||.

Hence

wx(δ;f)< +|f(x)|+δ1

0(1 + 2δ)||f|| for all δ >0.

This inequality and the condition (14) ensure that the right-hand side of the estimate (13) (with arbitraryq ≥3) converges to zero asn→ ∞.

Letm ∈N0. Denote byCm(R0) the class of all measurable functions f on R0, such that

||f||m = supx∈R1+x|f(x)|2m <∞.

It is easy to see, that operators Mnf are well-defined for every function f ∈ Cm(R0).

Further, for continuousf ∈Cm(R0), let us introduce the weighted modulus of continuity

ω(δ;f)m = sup|h|≤δ||f(·+h)−f(·)|| (δ >0).

(10)

Theorem6. Letm∈N0,x∈R0,f ∈Cm(R0)and(an)1 , (bn)1 are fixed.

Then

(1 +x2m)−1|Mnf(x)−f(x)| ≤

≤K(m)

(1 +x)2m+3+ 1+xx 1/2 1 bm+5/4n

ω(b−1/2n ;f)m, for all n∈N.

Proof. It is easy to see, that for anyx∈R0,r∈N

|f(x+rt)−f(x)| ≤

r−1

X

v=0

|f(x+vt+t)−f(x+vt)|

1+(x+vt)2m (1 + (x+vt)2m)

≤ω(|t|;f)m

r−1

X

v=0

(1 + (|x|+v|t|)2m)

≤(1 + (|x|+ (r−1)|t|)2mrω(|t|;f)m. Therefore, for any x∈R,δ >0,r ∈N

wx(rδ;f)≤(1 + (2x)2m+ (2(r−1)δ)2m)rω(δ;f)m.

This inequality and Theorem 4, with q= 2m+ 5/2, lead to Theorem 6.

Acknowledgement. We are grateful to the referee’s valuable suggestions.

REFERENCES

[1] Inspir, N.and Atakut, C., Approximation by modified Szasz-Mirakyan operators on weighted spaces, Proc. Indian Acad. Sci.,112 (4), pp. 571–578, 2002.

[2] Herman, T.,On the Szasz-Mirakyan operator, Acta Math. Acad. Sci. Hung.,32 (1-2), pp. 163–173, 1978.

[3] Totik, V., Approximation by Szasz-Mirakyan-Kantorovich operators in Lp (p > 1), Analysis Math.,9, pp. 147–167, 1983.

[4] Totik, V.,Uniform approximation by Szasz-Mirakyan type operators, Acta Math. Hung., 41, pp. 241–307, 1983.

[5] Saks, S.,Theory of the Integral, New York, 1937.

[6] Walczak, Z.,On certain modified Szasz-Mirakyan operators for functions of two vari- ables, Demonstratio Math.,33 (1), pp. 91–100, 2000.

[7] Walczak, Z.,On modified Szasz-Mirakyan operators, Novi Sad J. Math.,33 (1), pp. 93–

107, 2003.

Received by the editors: January 20, 2009.

Referințe

DOCUMENTE SIMILARE

We apply the King’s approach to propose the modified form of these operators, so as they preserve the quadratic functions, which results in better approximation for the

In this work, we consider a Kantorovich type generalization of q-Szasz-Mirakyan operators via Riemann type q-integral and prove a Voronovska- ya type theorem by using suitable

Sz´ asz-Mirakjan operators, Kantorovich operators, Bohman- Korovkin theorem, modulus of continuity, Shisha-Mond theorem, degree of ap- proximation, parametric extension,

, Global approximation theorems for the Szasz-Mirakjan operators in exponential weight spaces, Linear Spaces and Approxima- tion (Proc.. G., Constructive Approximation,

In this paper we shall show that the approximation order of differen- tiable functions by beta operators can be improved by some modification of formula (1.1)... From Theorem 3.2

and Gupta, V., An estimate on the rate of convergence of bounded varia- tion functions by a B´ ezier variant of the Baskakov-Kantorovich operators, to appear in Demonstratio Math.

Kantorovich and Stancu operators, moduli of smoothness, K-functi- onals, contraction principle, weakly Picard operators.. Stancu proved that the sequence (S n (α) ) n≥1 converges to

In this note we consider an approximation operator of Kantorovich type in which expression appears a basic sequence for a delta operator and a Sheffer sequence for the same