• Nu S-Au Găsit Rezultate

For these notions it can be seen

N/A
N/A
Protected

Academic year: 2022

Share "For these notions it can be seen "

Copied!
9
0
0

Text complet

(1)

STUDTA TJNIV. MB A BEŞ-B O L Y A I ” , M A T H E M A TI C A , Volume XLIV , Number 3, September 1999

S O M E A P P R O X I M A T I O N ID E A L S

N I C O L A E T I T A

A b s tr a c t. We consider some approximation ideals of operators on oper­

ator spaces. The method used is similar to that from [8], [10], [11], in the case of the classical Banach spaces, or [2], [7] for the case of Hilbert spaces.

1. In tr o d u ctio n

The theory of the approximation ideals is well known for the case of linear and bounded operators on Hilbert, or Banach, spaces [2], [6], [7], [8], [11].

Here we consider the special case of the completely bounded operators on operator spaces. For these notions it can be seen [1], [3], [5].

We begin by recalling some definitions.

An operator space

E

, in short O.S, is a Banach space, or a normed space before completion, given with an isometric embedding

J

:

E

—►

L(H),

where

L(H)

is the space of all linear and bounded operators

T : H FI, H

being a Hilbert space.

We shall identify often

E

with

J(E)

and so we shall say that an O.S is a (closed) snbspace of

L(FF).

If

E

C

L(H)

is an operator space then

Mn

O

E

can be identified with the space of all

n

x

n

matrices having entries in

E,

that it will be denoted by

Mn (E) .

Clearly

Mn (E)

can be seen as an o.s. embedded in

L(Hn),

where

Hn = H

0 ... ©

H

(number of

H

is n ) .

Let us denote by || ||n the norm induced by

L(Ifn)

on

Mn (E)

, in the par­

ticular case n — 1 we get the norm of

E.

Taking the natural embedding

Mn (E)

—»

A/n + i (i?) we can consider

Mn {E)

included in Mn+i

(E) ,

and || ||ri induced by |H|n+1 . Thus we may consider

(E)

a normed space equipped with it’s natural

n n orn l ll'llco •

109

(2)

NICOLAE TI TA

We denote by

K [E]

the completion of

\jMn

(

E

). If we denote by

n

A'o =

\jMn,

the case

E =

C, then the completion of

K

o coincides isometri-

n

cally with the C*-algebra,

C(l2),

of all compact operators on the space

l2.

It is easy to check that (jA /n

(E)

can be identified isometrically with

K

q

Ç)E.

n

The basic idea of o.s. is that the norm of the Banach space

E

is replaced by a sequence of norms {|| ||ril} n on

{ Mn ( E) } n

or by a single norm H-H^ on the space A'

[E],

D efin ition 1. Let

E\

C

L( H

i) and

En

C

L(H

2) be operator spaces,

u

:

E

i

—> E2

be a linear map and

Un

: (xij) G Mn

(E\) —y

( u( xj j) ) G

Mn (E2) .

We say that, u is com pletely b o u n d e d , c.b ., if sup ||w„|| < oo and we define

\\u\\c b

sup||nn||.

n n

D efin ition 2. (equ ivalen t)

u

is co m p le te ly b o u n d e d if the maps

un

can be ex­

tended to a single bounded map

Ur<>

:

K

[AJ

K [E2]

and we have ||t/.||c

b

= . D efin ition 3.

c.b

.

(E\, E2)

{?/ :

E\

—)•

E2

:

u

is c.b.} . We shall consider the

c.b.(E\<E2)

equipped with IHL.6. •

Remark L

The similar definition of the uniform norm for the bounded operators can be written as follows:

IMIc.6. = sup {||«oo|| x e K [A ], 11*11 <

1

} .

Remark 2.

Likewise the case of an isomorphism between two Banach spaces, we say that two o.s.

E

i ,

E2

are c o m p le te ly isom orph ic, co m p le te ly isom etric, if there is an c.b. isomorphism

u

:

E\ —y E2

with c.b. inverse and in addition |M|r.& —

||u- 1 |«(El)l|c.fr. = 1

Let.

Ei

C

L(FI

i) and

E2

C be operator spaces. There is an embedding J :

Ei

O

E2 —y L(H

i 0

Hn)

defined by

J

(x\0 x 2)

(h\

0

h2)

= xi

(h.\)

0 x 2

(h2) .

We denote by

E\

0 min

E2

the completion of

E\

0

E2

equipped with the norm

1 1 0

(3)

SOME A P P R O X IM A TIO N IDEALS

O b viou sly

J

can be extend to an isom etric em bedding. So we can see

E\

® mjn En as an o.s. em bedded into L(H\ ® a Hn). T his space is called the m i n i m a l, s p a t ia l, t e n s o r p r o d u c t o f E\and En. (Hi ®a Hn is the hilbertian tensor p rod u ct, [7], [] 1].)

If E C L(H ) is an o.s. then Mn 0 min E can be identified with the space Mn (E) and K [E] can be identified isom etrically with K ©min F. Thus, for any linear m ap u : E\ —►En we have ||t/.||c6 = ||/® u : K ® min E\ —ï K © mjn En\\ = Il/ O V ' K Omin E\ -> K ® min En\\c b . M ore generaly it can be shown that, for any o.s. F C L (H), we have ||7> ® u : F ® mjn E\ -> F ®min En\\ < ||u||c 6 . Further on, if v : F\ Fn is another c.b . m ap, we obtain

Il

U

0

v

:

Fl

® min

El

- >

F2

©min

En\\cb

< IMIc.6. * ll^llc.6. • T h is relation will be very useful in the sequel.

For others properties o f the m inim al tensor product it can be seen the papers [1]. [!)], etc.

2. A p p r o x i m a t i o n n u m b e r s o f c o m p l e t e l y b o u n d e d o p e r a t o r s

D e f i n i t i o n 4 . Let u : E -» F be a com pletely bounded m ap, u E c.b. (E , F ). T he a p p r o x i m a t i o n n u m b e r s , acnb( « ) will be defined as follow s

acnb (u) := in f {\\u— a.||c b : a E c.b. (E , F ), rank (a) < n) , n — 1 ,2 ,....

Remark 3. From this definition it results that ||w||c 6 = b (u) > a ţ b (u ) > ... > 0.

P r o p o s i t i o n 1. The approximation numbers a £ b (u) verify the following inequali­

ties:

k k

1. acnb- (ui + u2) < 2 • ( rt" fc ( U l) + a" b (U2)) ,fo r k = l ’ 2 ’ •••

n = l n = l

k k

2.

^ 2 anb

(wi 0 ^2) < 2 •

^ 2

(ani> (wi) * anb (ul)) i for fc = F 2, ...

77 = 1 77 = 1

(4)

NICO LAE T IT A

Proof. 1) Let. e > 0. T here are a ,, i = 1 ,2 , such that rank (a*) < n and ll«i - rt>llc 6. < a n b ( « « • ) + I -

W e ob ta in :

n2b n -i

(«1 + «2) < ||(«1 + « 2) -

(ai

+ a2)||c.6. <

< ll« l - “ lllc.b. + llu 2 - 0 2 ||c.6. <

< < b ( « 1 ) + « n b ( U 2 ) + S.

Since e is arbitrary it follow s that:

a - ï n- 1( « 1 + «2) < < 6 ( «1) + ( «2) •

Further on it results:

E < 6 (Ml + «2) < E «2 n - l (Ml + «2) + E «2-n (« 1 + U2) <

ri = 1 n = 1 n = 1

< 2 • E « 2 ' n - l ( M l + M2 ) < 2 • E ( " n b ( « l ) + M *'6 ( l / 2 ) ) .

n = l n ~ 1

2) W e consider also a ,, ?’ = 1 ,2 , such that, ran/c (a,-) < n and

||«i - a i||c ,fc. < a n 6 ' ( M . ) + §•

W e obtain :

« n b ( « 1 ° M2 ) < 11 ( w 1 O m2 ) - [ « 1 O

a2

+ a y o ( u 2 - a 2 )]||c 6 =

= | | ( « i ~ M l ) O ( w 2 - a 2 )||c b < { a cn b ( « ! ) + § ) • ( a ^ b ( t * 2 ) + § ) .

Since e is arbitrary it follow s that:

«2 n - l (Ml o Wo) < acnh (w i) • acnb- (w2) •

Likewise the 1) results 2). □

Remark f For the case o f the linear and bounded operators between Banach spaces the above inequalities are known, [8], [11].

In the sequel we deduce an inequality for the case o f the c.b . operator u\ Q mm Î/-2 using a sim ilar m eth od with that from [9], [10], used for the classical case o f the bou nded operators on B anach spaces.

P r o p o s i t i o n 2 . The approximation numbers acnb (iii ® mm w.o) verify the inequalities:

L

an

(ul

0min

Url)

< 6

k ncb

£ —

n = l

(

m

, H M I

c.b.+ «n 6' (M2)

I k I L

for fc = 1 , 2 , . . .

1 1 2

(5)

SOME AP PR O XI MA TI ON IDEALS

Proof.

Let

> 0. There are a,-,

i =

1, 2, such that

rank

(a,) <

n

and

I K - a.ilc.6. < anb' (««O + §•

We obtain:

('M l © m i n d o) ^ ||m i © m i n w 2 ~ a l © m i n ^*21|c .6. =

= | | («1 - « l ) © m i n U2 ~ d\ © m i n ( « 2 - d 2 )\\c 6 <

< ll «l - « i l k • I k l k . + H«1 Hr.6. • ||«2 — «2IL.6. <

< («0 + §) • I k l k . + ||«1 ~ «1 + «iile

6.

• («n6 («s) + §) <

< ( « n 6 (m i) 4- § ) • I M L f t . + ( | k - m i||cb + | k l k . ) • ( < 6 (l<2) + I ) <

< ( < b ( «1) + § ) • I k l k + 2 • I k I k • ( < b (t»a) + 1 ) .

Since

e

is arbitrary we obtain:

aCJ (M ) ® m i n M2 ) < 2 • (acn b ( «1) • | k l k + acn b (u 2) • ||m i||cb ) .

T a k in g account th at the sequence o f the aproxim ation num bers is decreasing we can w ritte:

^2a n

b'{"iv>m\n'U

(** 1 <8> m in'** 2 ) 2

)

< ÿ2 (2 •

n

+ 1)

n = 1 11

N ow we o b ta in : k

3

n = 1E 3 E n — I

a% (wl<8>ininW2)

, where j 2 < k < ( j + l ) 2

^

Y

2 (2 • n -J- 1 ) fl»2‘^tl®minU2^ < 3 .

Y l n '

°n2 ^tl®minti2^ <

n- 1 n = 1 n = l

0 ^2 a n h(U l) llU3||e.b + a n b (t<2)-||»l||c.fc: < 6 ‘ ^ fln * ' (Ui H IM Ic . b . + fln * ' (“ - H I ” dlc.b.

n = l H n = l

T h is finishes the proof.

Remark 5. B y m ea n s o f these ap p roxim ation num bers we can define special approxi­

m ation ideals in e.b. (E, F ) .

3. S p e c i a l a p p r o x i m a t i o n i d e a l s

D e f i n i t i o n 5 . Let x = {a?i, a ? o , b e a real sequence and let card (# ) be card {i ÇL N : Xi 0} .

Let K be the set o f all real sequences x G /no having the follow in g two properties:

1.

card

(j?) <

n

(x),

n

(a;) is a natural number

(6)

N ÎCOLAE T IŢ A

2 . X \ > X 2 > . . . > æ n (ar) > 0 .

A function $ : K —> R is called a sy m m etric n orm in g fu n ctio n if:

1. $ (.r) > 0 if x G K and x 0;

2. $ ( o r • x ) = a • $ ( x ) , for every o > 0 and x G A";

3. O (.r 4- y) < $ (x ) + $ (y) , for every x, y G A ';

4 . $ ( { 1 , 0 , 0 . . . } ) = 1 ;

k k

5. If x ,y G A' and ]T]x* < f ° r everY ^ = 1 , 2 , then $ (:r) < $ (y) .

j = l i = l

Remark 6. T h e above definition can be extend on the whole space taking

$ ( . r ) := lim $ ({x ^ , ..., x* , 0, 0 ...}) , where x* — { x * } if;/v is the sequence {k ?'| }?€;v rearranged in decreasing order.

D e f i n i t i o n 6. In the sequel we shall consider a subclass o f c.b. (E, F) which is defined as follow s:

4> - c.b. (E, F) := { « € c.b. (E, F) : |M|c* fc := $ ( R " ( « ) } „ ) < .

Remark 7. W e prove that this class has similar properties with the sim ilar classes defined for linear and b ou nded operators. (For the case o f the Hilbert spaces it can be seen [2], [7] and for the case o f the Banach spaces it can be seen [8], [9], [10], [11].)

P r o p o s i t i o n 3. — c.b., ||.||^6 ^ is a quasi-normed operator ideal.

Proof. 1. Any unidim ensional operator , a G c.b. (F , F) , belongs to

$ —c. 6. (F , F) because, in this case, the sequence { a £ 6- ( « ) } = {||w||c6 , 0 , 0 , . . . } and hence $ ( R 6 ( « ) } „ ) = I M R <

2. If u1,^2 G c .b .(E ,F ) then ui + un G c .b .(E ,F ). This results from the p rop osition 5 (1). and from the properties o f 3>, as follow s:

* ( R * R + u 2 ) } J < 2 • $ ( R b R ) + < 0 R ) } „ ) <

< 2 - ( * ( R 6 ( « , ) } „ ) + * ( { < * • R ) } J ) .

3. If v G c.b. (E, E) , u G $ — c.b. (E, F) and w G c.b. (F, F ) then 114

(7)

iv

o « o ţ) G $ -

c.b. (E

,

F )

.

From the proposition 5 (2) and from the definition of a£6

(u)

it follows that

0C nb' (<<’ ° « ° »') < ll« ’tle 6 • anb ( « ) ’ I M U . a n d h e n c e

$ ( { < 6' ( l | ,0 « 0 t ’) } „ ) < ll«ilc.6. ( « ) } „ ) ll'ilc.fc - D

Remark

8. We present now some properties similar to the properties of the classical approximation ideals L<j>, [8], [11].

Lem m a 1.

The approximation numbers acnh (u) verify the inequalities:

SOME A P P R O X IM A TIO N IDEALS

k Y A ' b n -l

n — 1

k k

(«) < («) < 2 • E « 5 - n - l (W) =

l ' 2’ -■

n = 1 n = 1

Proof.

The first, inequality is a consequence of the fact that the sequence

{a^b

(u ) } n is decreasing.

The second inequality results as follows:

E ° n b ( « ) < E anb ( « ) < E « 2 n - 1 ( « ) + E « 2 n ( « ) <

n ~ 1 n — 1 n = 1 n = 1

5: 2 * E a 2 n - l ( îf ) •

n = l

C orolla ry 1. ||u||^6' ( { é t - i (w )}n) a

quasi-norm equivalent

with i m i; 6- = $ ( { < 6 ( w ) } J -

k k

/

Remark 9.

Since ^ (a£6- (u ))P < E ( » E < ' 6' («) i=1

P

<

<

r ( p )

E

( < 6’ (W))P . 1 < P < = 1,2,..., n = l

see the Hardy inequality [11], it follows that

* ( { K ‘ < » » ' } „ ) < * ( { ( ; î > ‘ w ) } J < ' ( » ) • * ( { « * < « » ' } „ )

and

hence

||«||$bp) is equivalent, with |M|*bp) := $ (P) ^ j j j • E « f 6' ( « ) } ) -

(8)

N ICOLAE T IŢA

where <ï>(r) ( { * ; } ) = ^ } ) p is a sym m etric norm ing fu n ction , [2], [6], [7], [11], for 1 < p < oo.

Because acnb (u ) < ( a f 6 (u) • ... •acnb (u )) n < £ • J2ai'b' (n) l{ follow s> also, n

2 = 1

that

i a n b ( « ) } „ € l * (r) if 9 n («) := { ( « î fc («) • ••• • < 6 («)) " } n €

{•^n} £ ^(p) ^ ^ ^(p) ^

Remark 10. If we consider the special case o f the function

K 6 N ) p p

^ ( p ) : ( K b ( « ) } ) - > *

n

where 1 < p < oo, the classes <£(p) — c.6. (F , F ) are tensor product stable.

P r o p o s itio n 4. If G $ ( p) — c.6. (F * , F^) , fc = 1,2., then

U l

®min ^2 £ ^(p) C.6. (F^ ®min F2, Fţ ®min ^2) •

P roof It is sim ilar to that for the classical approxim ation ideals [10], [11].

First we remark that, using the relation

for A* = 1 , 2 ,..., see P rop osition 6 for p = 1.

Now taking into account the properties o f the functions it follow s that we can obtain

c (/>) • $

« * • («0 • ll«allc.fr.)P | («;

n

,c.b.

n

( « 2 ) ' I M I C b)

n

r

116

(9)

SOME A PPR O X IM A TIO N IDEALS

Hence

$(r) ( { ° n 6' (U1 ®min «2) } ) <

< O

(P) '

(*(p) ( R * («!)}) • I H U + *(P) ( R 6 («2)}) • IKIU.) <

< 2 - 0 (p) . ? (p) ({o*-4- («!)}) R P) ( R fc M } ) ,

C i ( p ) = c ( p ) r and |KI|c 6 < $(P) ( R 6' («*)}).* = 1,2.

The proof is fulfiled.

Rem ark ÎL

The above result remains true if we consider the m axim al ten sor p r o d ­ uct.

R eferen ces

[1] D.P. Blecher, V .I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991) 262-292.

[2] 1. Gohberg, M . Krein, Introduction on the theory of the linear, non-adjoint operators on Hilbert, spaces, Nauka, Moscow, 1965. (in Russian)

[3] V . I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics, Longmans, London, 1986.

[4] V . I . Paulsen, Representation of function algebras, abstract operator spaces and Banach space geometry, J. Funct. Anal. 109 (1992) 113-129.

[5] G . Pisier, Operator spaces and similarity problems, Documenta Math. (I.C .M . 1998) 1-429-452.

[6] N. Salinas, Symmetric norm ideals and relative conjugate ideals, Trans. A .M .S . 188 (1974) 213-240.

[7] R. Schatten, Norm ideals of completely continuous operators, Berlin-Gottingen- Heidelberg, 1960.

[8] N. T iţa, Operators of <rp—class on non-Hilbert spaces, Studii Cercet. M at. 23 (1971) 4 6 7 -4 8 7 .(in Romanian)

[9] N. Ti(,a, On a class of operators, Collect. M ath. 32 (1981) 257-279.

[10] N. T ita, Some inequalities for the approximation numbers of tensor product operators, Anal. Şt. Univ. ” A1. I. Cuza” Iaşi 40 (1994) 329-331.

[11] N. Ti^a, S-numbers operator ideals, Ed. Univ. Transilvania, Braşov, 1998.

De p a r t m e n to f Ma t h., Fa c. of Sc i e n c e, ” Transilvani a” Un i v., 2200 Br a ş o v, Ro m a n ia

117

Referințe

DOCUMENTE SIMILARE

We provide a semilocal convergence analysis of an iterative algorithm for solving nonlinear operator equations in a Banach space setting.. Using our new idea of recurrent functions

[8] Krupnik N ., Banach algebras with symbol and singular integral operators, Operator Theory: Advances and Applications, Birkh¨ auser Verlag, Basel, 26, 1987.. [9] Krupnik N.Ya.,

Lipschitz duals, meaning spaces of Lipschitz functions on a metric linear space, were used to study best approximation problems in such spaces (see [10]).. A good account on

Kobayasi, K., Sanekata, N., A method of íleratìon for quasi-linear evolutíon equalions Ìn nonreflerite Banach spaces, Hiroshima lt4ath. S., On mcasurable

From the behaviou¡ of the tangential rnodulus in the neighbourhood of some points we obtain information about the geometry of the Banach spaces, A charac- tenzation

iteralioe metltods, Intern. Chcn, Dong, On lhe conuergence of ct class of gcneralizcd Steffettsen's iteraliue prccedures dtrd eÍror analgsis, Inter'. E., On the

tation ancl su_ggested, for a lather large class of genetic algor,itìrrns a iirn- ple but useful chalacterization of the implicit pãrallelìsrnl. - rn the present

of Tapia's theorem to the complex case and provirles rnore infolmation. in connection rvith the rcpresentation element