• Nu S-Au Găsit Rezultate

View of On the midpoint iterative method for solving nonlinear operator equations in Banach space and its applications in integral equations

N/A
N/A
Protected

Academic year: 2022

Share "View of On the midpoint iterative method for solving nonlinear operator equations in Banach space and its applications in integral equations"

Copied!
8
0
0

Text complet

(1)

138 II. tJugg..isclì, P. ìlazilu trtt<l II. \Vcl¡cr' 12 Anfahlzeiten

: ?t :

1000 s

f', :

100 s

?'s:10

s

Rclaxationszeii,

: l Stuntle;

jeder \rclsuch

\yurcle drcitnal l'iederholl, ;

Streunng

: 2-5%.

Die

experirnentellcn

l)aten

sincl

in Abb. 1

clar'.qcstellt.

Aufgruncl

cles oben er.çr'áhnten AJgorithmns und mit, Flilfe eines I¡OIìTRAÌ{-Pt'ogramlnes -wtlr'- den clic folgenclen \4¡clto bestitnmt :

cq: +7.7

Àr

:

0.00

u,r: IÐ.7

Àz

:

1.05

r¿s

: ,11.i1

Àj

:

14.10

Dcr. \rcrgleicÌr

zs'ischen

den expclirnentcllen uncl

bercchncl,olì Wel'ten

ist in ;lbl¡. 1

zrL sehcn.

ilr.'ulì

D',¡\N,\Ll'Srì xurrrirtlgun rì.r r)ìì

rrrticlnr'

r)r,r r,,r\r,r,RoxtìIr\'r'ñ

'I'orno 23, No 9, lgg4, ¡¡r. lJ$_lJ2

ON THI' N,IIDPOINT ITERATIVE *{ETHOÐ F'OR

SOLVING NONLINEAR OPERA'IOR E.SUATIONS IN BANACFI SPACE

AND I'I'S APPLICATIONS TN INTEGRAL ESUATIONS

DONG CII.IJN

(1.a5'c l- l_cv ilÌ e)

and IO..\NNIS ì(.,,\IìGY}ìOS (I.al ton)

1. INlIIOI)UCI'ION L

I1'tt Ìì.\

-r tJ lì v Èl l'. z E Ic,

lt

N I S

21. Il. \\Icbcr., ðdn nicltllincrucs Sloff¡lcscLz lür ttic cbcrtc pttoLouísl;oelaslisclrc SpnruttLrtgstutuLgsa,

Iìhool. À,cla ¿2 (1983) 774-722

22. 1I. \Vcì;cr., .Einnchsiges niclttlittccu'cs ¡thotouisl:ocltLsliscltcs V¿rlruIIett uott PYC-weÍclt ttttd

U P-I.cgttuttl, Iìhcol. r\cta 20 (1981) 85-93.

2g. lL llrri¡giicìr, ir. llazilu unrl lI. \\'eltcr', Pc¿rrnteler idenlificctliott for uiscoelaslic tnaletials, ììhooÌogica Acla 27 (1988) :163-368

r' this

stucr¡' 1ve ¿ìr'e

conce.ned'.iilr ilrc

¡rrobrer'

of

appro_rilììâi,ing a ìocall.v

unique

zero

n4 of the .q.*tion

(1'1) P(u) :11,

in

a Banach space -Y¡r where -Z)

is

r,

nonlineal

operator

clefi'erl on

soûre coD\:cx sul¡set

of

,,l"o

wiilr

r.alues

in y¡.

incle.x

point of the vicrv

[19, 20],

ch better than that of

r\ervtonis s.

fn

flre sccontl section of

this

study nvergence flreorem and give ur,

"*l

ryhich

is a function

oT

ilre initial h is

ca,lled

ilre rnidpoint

method

of

orv

flrat

flre miclpoint mothocl is also rcler u,hich \yas definod

ì:y first

au_

error

bouncl

is

thc satrtc

as that of

appri c a'on s o

r

rh e rnidpo

int,"ïï,ff

:

ii'

"li,;:Tl

J':

:îîXlå:,ï å"#13*

fo the

sorution

of nonlinea' i'tegrar equations

a¡r¡roarÍng

i'

neutron transport.

Iiir)g(ìS-arìg(ÌrÌ anr 1 r\pt'il 1991

Inslilu.l fiir Alccltanísclre VeLfnlu cttsleclttilt untl ÀIecluutili cler Ut'tiucrsildl l{arlsrulrc (7'II)

-1)- 7500 liru'lsrulrc, Gcrtttuttg

(2)

74J l). Chcn cucl J. J(. Ar9)'r'os ,:)

Ìlclatilc trlcthotl 741

2. ft,tStC tlIlRÀTION ITDLATIO¡;--S

Iìilst

rve define the niethod as lollor.vs :

: ltn ,l+

!t,

! r:,)]

T "t+

Qln

t

,:,)

:

lrn

- 'l+

(!tu

* t:;l-'[r'l]ur"

- P'(r") lP'(u"¡1'tP(rn) :- Fo' ar arhitra'v

cJroice {roe

x¡¡, rel, us clefinc the .ridpoi't

pro-

ceclurc by | .n

- P'(r") (y" -

un)

(2.r)

!/n

: rn

- P'(r,r)-lP(rn),

c)nrt

: ." - o,l+

@,

I ,rf-'

'l-helefore

it follol's

that,

P(y,) -

?'(yn)(,t:,,

¡t -

!/,)

:

P(a:")

\4ie.orv

1,rv to Tind

a'

cxpression for

?(rn*,)

*,hich can later bo ¡16¡1i- natecl

by a

real" function.

LDlrivlÄ 2.2. Assu,nt,e tJtcLt

P

:

D

,Yp

-

y-n

is ¡oice

trrécttef,-d,iJfe_

renti.cr,ble,

u

in, incttLctüd

in

ct

riìrt

nnna"n,'i,iLáe

.À'3, with aa 'ftlten

II

P(rn*t) :

\p,,(.!J,,

-l t(t,,,r -

.1,))(1 __

t)

tjt,(r,,.r,

_

!/,)z

_

J

P(yI

-r

I

t

I L

P' klò - P'

---Qt"i l

2

1

- (Y,*

2

l1 L2

*rr)f

",) ] r1 t;

(y"

-l r") j

-t(t:r*t.

- !lu)*

+P',

(rn.rt

-

!/n)

:

- l'(y") I P (ru-¡ -

!io) l-'

- *\",,[

0

I ¡r''(Y') - P'

(y^

l rr,)]]

{,.,,,

t -

,!tn) ==

î r..

1-

r *,r, - .,)f at|- (u. -

cn)

-

J

llr'{r,, I t(y* - rì,)) - p'(r^)tùt(y,

-

an)

-

- l.l*,r,,+ ",)] - P'(c,,)] (y, -

rn)

-

-fr',r,,, - ,l+ (v, j- *òll"'i+

(E^

)- ,,,,)f

Ii

0

P"(r, lt(u,-

n,))(7

-

¿)

- +p,,i.,+*rr,-r,l]]artu,_n*)2.

Proof. We obtain in turn

P(nnr) : P(nn,t) -

I?(y,)

-

p'(y,)(trn+t

-

!ln)

-l I

P(y")

I p'(yn)(r^+t-

!tn)

:

aI

:

t

\p,,(,,," *

t,(rn.rt"

_ y*))(l _ t)rlt(rnr, _

Un)L j_

J

+

I

Ir'' li,t,,, * r^)] - "',t,]

@,

- *u) :

:5

i l

ï

-5

I?"(n,,

*

t(8,,

- n.))(I-

f) ttú

(ll, -

n,,)2

P"I *, + +

(yn

- n,)] ., + (y, --

!),;)z

* P(llo) I

]?'(y,)(nn+t

-

!t¡,)

,

Oìrserve

that from

(2.1), r,r,e have

?n+t

tt,

- P'(fin)-t]''(a^) l-

P'(rn1,):1p(u:,)

- p,f

! {r.+*-)f-'o,*,, : P"[-]- L2

l@,"

+ $,) * *rr,- r,)] dt!-@,, -

r*7

:

Un

- l* r" + '',,)] - p'1*,,)-'1P(n,,) : ,l; (u*i s,)l '5o"[',,++(y,- n,)la,lø, -

û,;)2.

That cornpletcs

the proof of the

lemna.

(3)

742 D. Cllen ancl I. I(. Algylos 4 Ð Itclatìve llcLhocl 143

3. SOITT USDIìUI, INUQUAI,III]]S

By tahing

noÌnìs

in the

abol.e a,ppt'oximation,

\'e

ltave

llr"*, - y,ll

<

- +

ll

p' ]- (r. t ,^f

'll

i

ll

'"(",, + | {u,,- ,,,,

ll

t!r, - n,t,

<

u - o'[å

(r, -]- s,)

)- +

þn

- t*)'(

ra11

-

,e2.

(C2) : Moreo\.et'r \\'e har.c

.,I

_

llil"",", 1-t(y,-n,))(r -¿) -+o"l*,+ltu, ""t]],ull -

l,nlruA

3.7. Assu,ttte tltnt ,ítt, ctdditi,on, to ttte lrygtoth,eses o.f Letnmu Z.Z Ih,e Jollowing estimates cn'e

true;

(À1) lly" - #,ll <

sn

-

t,,t ll

P(r,)

ll

( g(t), (,\2)

lr

p,(r,,)-,ls-y,(r")-',

li",l* @--tyòl'll u - o,l+(¿,*,,) j

,

(l\3) (44)

cnt,iL

(Aõ) Ihett,

(cl)

(c2)

uir+fr-] i

1

<r

llP"(n) ll < /1, llP"(y) - P"(u) ll

S-¿\rlly

- rll g(t):Lr,- 2(rp l_ t+!

ll!

1

rl -

lt\

lP"(nu I t(y" -

ø"))(1

- t) -

(L

- t)P"(t:,,))c\t

ll"

il

r,*t --

y,

ll <

l,+1

-

s,,

I ilr,"," i- t(y -

,,,,,,))(L

- r) -

0

+ lI o",*,,) - + P"l*i, + ! tu,- ',,]] *ll

=

7,,,,

2

f ".* îr,. - n,,)]o']ll u # ty,- n,t1,

liP(a,nr)ll

S t(¿,*r)

SrY t(\ -

t) rltäy,,

-

,r,il

+ +

t,itri1y,,

-,

lcu

l: #',1y,, - n,lj

(c3) ctnd

(03)

: Irrom

Lernrna 2.2, s,c hâr,c

llP(ø,*,)il < #ll¡r,n, - u,li' I ll' r, -.r'"lia *

(C4) lltl,*t - r,rr il

S s,+r

- fu+'

mhere

to:0t

t,, tnt[l S]i,are tle,Jined, cts Jolloms:

sn:tt- -91''J-.

tl'(ün) '

+ + ll",[+

@, -t-

r,,r] 'l]iry, -

r,,rB

(

(3.1) oqt")

< f, i,,*, -

sn)2

* :i-(s, - tn)' +

tn+t

:

1,,

tl+(r. + *J] -r , -{ ì1' I

(sr,

-

fn)B

-K (s,fl*) þ2

Proof

.

(C1) :

Irrom

(2.1),

s'c

gct ffir+t

- A*

t# *T1," -tu)ù

: - r v[+@,*,^f-'io"(,," t-] {u,,--,")) dt(yu-

æ,,)¿

0

< jf

{,,n,

-

su)s

*

+ -+(r' r

s")

:

9(l"nt)

(4)

144 D. (lhen ancl I. Ii. Arg¡'r.os

(C4) :

Finally, frorn

(2.1)

we

gel,

llU"*,

-

n,+r ll

:

ll

-

P'(ntn*r)-1P(c:,*r) ll S

llP'(r,,*r)-t]]llp(ø,*r)

ll S

( - 9'(fn*r)-tl(f,*r) :

s¿+1

-

tn+7.

That

completes

thc

pr.oof

of the

I_,enlma.

\\ie

har-e norv built,

up the

necessâr,y estimatcs

to

pLor-e

¡rc

rn¿iirr

result x'hich is ilre

subject

ãt ilre next

sectiotr.

4. îIIIì l(r\NloIìOYICII COÀ-\'liIìGìì\Clì TIÌlìORfitI

^\I) IÌRItOtt IìOUìiÐS

lrrr¡onnu

4.1

. Let PtDo -,,i; *

}-ar

Xu, To

1t.e Rrutaclt, spctcæt, rea,l or contpleu etnil Do i.s cuu o1te,n, cotlj:efr dornrtin,. ¡Lssu,me lhat

p

ltus Z,n,cl

ortler cot¿tittttous Ilrécltct rIe¡'it:uti.t:cs cttt .I)o etttl, llLat tlte .fo['(,ott,iu.g coucldriqtts

are

søli.sfiecl:

(4.2)

i,,P"(u)

lj<

,tfii

p,,(t:) -

p,,(tD

ilS

,v il

r _ y

jl,

J'or a,ll

u,

y e 1)o

(4.3) llp'(rn\-ril < p,

l)yo

- roll (

rr,

,llIoreo't,er¡

uc

ltu'¡*e tlrc Jollouin{l

eïtot

esli.tnettes tutd oQttitttu,l

en'or

cons- Itntts :

(4.10)

li,,;,,

-

l;,,*

]i<

I'r

- t,, Jor

aLl n,

(4.11)

ll,t/,,

-

rj'F

ll<

?'r

- s,, .for

ul'L n.

tuutl

( L

t:r)

t',

-

I,,

- (l - -ot)l

6,,"-,.

' I _

03'¿

Proo,[.

tlsirte

m¿r'thenraticnl

jnrluction, it

strffices

to

sliorv

ihnt

the

follol'ing

itctns

arc tlue for all

r¿.

(T")

r,, e

ßl(,rt¡,

).t

-

.r) ,

(II,,)

li !/ ,,

-

1¡r,, j 5! .s,,

-

1,, ;

(Tir,,)

!1, e I)(t10, t't

-

'q);

(I1'")

li

P'(r,,)-lLl < -

{t'ft

*)-1;

(\'") ll Lr

tl

u'l I (,., + " Jlr "13' ,/,,)l 'll

<

-

,,'l

L(¿,, +

s,,)'ì

'l '

atr cl

(\'T',)

il ,r,,*r

-

j/,,

il S

l,+1

-

s,,.

ProoJ.

rt

is r¿asv

to

cJreck

in thc

case of

n:0 by

inil,ial conclitions.

Nol'assulne

integ'cl vahtcs. th¿r,t 'Jlhen, n-e har.c

(r") - (vr,,)

are

truc

Jlor a fixccl r¿ ancl ¿l,II smallel positive

(r"nr)

: lla,,*, -

yoll

S

li ni,*r

- !J,,)i+lly,, -

yoil

S

(1,,n,

-s,,)f

*

(s,,

-so) : f,+r -

so

: t,+t -

'a

11\ -

"a.

(fI"nr) :

Ir-toLl't (C4),

l'e

ìrar.e

lltl"*, - r,,-rll S

úr+1

-

s,¿-rl.

(fI-[,,+1)

:

[[oreover', rrre 1'ÌA]re

lly,nr --

yo ll

( llt/,*r -

nuorll

l

ll,nu.r,r

-

!/,,il

I lly" -

yo ll S

S (sr*, -

lnnr) -l- (ú,,-rL

-,s,,) +

su

-

so

:sn+r - so:

.:8¿r-1- 4(l'L-'1t.

(l\',,nr) :

.Fulthermore,

l'c

hâr.e

6

(4.e)

tohere

r,

ís the smallest root (2.L)

is

crntaer,ç1ent. Also un

is

a, salution of tlte equation

^ I -l|-Ztt,

1

¡ 1fu= m'

ol

tgototio* (4.7).

Then

th,e rnirl.,poi.,nt gtrocedwre.

,3,

e ,Sn7-70,7,

-

,

for

all ø e

Xl. nti Umit

u'r.

P(n) :0.

ltcl'ativc Àlctlìo(l

P"(fru*r.

* í(n,*t -

tro)) dt(n,,*,

-

no)

14t

uj+#l

h=:I{p,.rìU+,

ñ(.rlo,

t',

-

-r¡) c: I)o

1 -]/T -

ztt

1

I

(4.1)

( 4.5) altcl (4.ô)

S

1l'

uhere rS(r, r)

-- {r'. Xo; lla,-- rll(

r},

(1.?) - ]- 2pp xr" - -L

¿

+ -a

(4.8) attcl

rì: \

P'(fro+r)

-

?'(øo)

:

(5)

746 l). Chen alrrl I. ii Arg¡'r.os

I

Itel'ative tr,Ieilrorl 147

so,

l[¡e obtain

p

llP'(n**r)-

P'(ao)/l

<

,Uil nn.t7

_

#0ll

<

1f(4,+r

_

úo)

: , _ p,ll

1

a'(æ"+r +

!/1,+I

1

: I(t,¡1 { I(r. : lç t -ltt

h

-m

.A

K !_v!_?t

r(þ"n

\

t -(1--

nP 2y,

I

P'(uo1 1

I

t)iJ

lt[

2 ll

n,*r-

fio

I

Au+t

- toll

and

by

l3anach Theorern [21,

pp.

1641 lr,(

o,+t)-r

exisl,s

alcl

1

li P'(ø,,*r)-t ilS li

l'(ao)-t

il

TM

ll

nn*,

-

0o ll

- {llr,,*, -

roll

s

1

- li?'(

øo)-t jl ll

P'(*,*r) -

p,(no) ll 9 2

s{ p 1 1

7 -

pKll nu+t

-

roll 1

K

2 1

p

- K,l

fr,,+t

-

0oll p

(tn*r-tr)-+(s,*r-úo)

\< 1 1

1

a P

: -

!J'(tn+t)-r. 1 1

2

_L

-

I((tu+I

-

to) 1 g' (4,nr

*

s,*r)

t) I{tu+1

1_r

g 2(

¿r+r

t

Sr+r)

(Y,'*r)

: Flom the

estirnal;c

'i+ '"'+t * a"*)f- P'(ro) : (Vf"*r) : Ifsing (2,1), rve

obtain

lluu*, - nu+tll:ll - ",LT r*,,-, r yn*)'l-'o,*,_r,

l]

u u ll ",li ,*,,., + u,,*,]'

ll tt

or*,-,rrr

<

s - s'lî r".r+ ,,*r)]

's

(t,+) :

tn+z

-

tn+t.

ll¡e

norv

prove

(4J.2).

Notice that P' Ir, * ]{r,,*rl

ltu+t

-z*o)l** (nn*,í

ltn+t

-

2no)¡

lYe get

ll"t+ (ru*ttv,,*,)f -

p'(,¡:o)i]

= +

ltuu*,

-,0ir r !ür,,*,--

#olrs

s f ir,*, -

1o)

+ '' (r,,*,.-

le)

:

{{,,,*,J_

s,.,-,)

s

u l!,,', *r',) - /(ri s r----r,7 _ l[1'-

2t-t

,:

_ t _Vl, _

ztt. o.( -1-

.

P -

P *iJP'(n:o)-t,¡'

Thc'cfo'c, b¡,ilrc Baraclr

ilrco'crrL

,,1+(r,,*, * a,,rr)l 1

exjsLs

artl

ll"'[+ (rr,*r t r,,.,,]-'ll u

g(t,,¡

:f;f,., - t,)(r, -

t,,),

J'(tu)

: - I ,U.r-

,,,)

+ (r, -- t,)),

g'(s, )

K

l(rt-s,)f(r'r-s")l

o

and

\ P'(un)-t

I

1

2

ú,

f

s,)

I -') t,,(ror '

f ii

n,f!

(nn.,.,

i

!Jn+t)

-

",(rr,]

l]

K

1

(¿,

*

s")

i

t'z

-f

tr,,

+ r,l]

|',t -- 2 2

(6)

148 7t

Iterative Method D. (lhcn atìd I. I{. Arijy f os

10 149

Also,

'n.c get

D'nrx*ron

2.

-(B-order) Let g(r) be

a

scarar testing

function of

or.der

2 given by

g(r)

: rt ttJ"- tr_. a p

¿

r*î *

a

for some nonnegative

constants

I(,

9,

\

satisfying the

cc A

sequence

of

iterations defined

in a

Banach spa

Ë"Ti"T"í-:#ä,à',j3"#: ilil-1d'ffå"i,å"1 ';n3

E(g(t,*r),

to, t,+r)

:

g(tu+t)

-

c(tn. tu*r)(tnr,

_

tn)Þ

:

g,

E(g(t,*r), tu.

sn)

:

g(tu*t)

-

c(fu¡ snXs"

--

tu)e

:

e

for

some c

) 0,

rvhere

E(P(n**r),

tn,t Unt frn+t)

: p(r,*ì _

R(no,

!/r¡

fr*ç11.

;tJ"ir"-, fnîä:-i-t"med to

be functions

or

these variables

in rhe

corres- tr'inally we .rvill need

the definition

rvhich lvas also

givon in [lL,

12].

DE.'V*row 3. The asymptotic error constant c(l-r¡ is

definod

by ,i-,9ß:'ì't-tr-

K

2 (\ -

t,)(r'"

- t,)

2

[(ti - t,) i

(¡.,

-

t,,)]

- t")'

r'1-tn!t,r -tu

1'ìren br.

(s. 2),

we har.o

1'7

-

t,,+t

: I\ - t, I (rr-t,)(t.r-

t,,\

(ri-

r,,)B

It,r_tnlrr_tr1lr,

ancl sirnilar.l¡r, rve get

-t, I

?.1

-,sa { rz- lrf r.r_su]

?'2

- tr*, -

(r, -

to)ts a(ú*)

: lim

9(tn*rl

Lt',

-

tu

i

t.z

-- t,llt,t -

t,

So rve

olttain

f- ?'1

"--

(tn*r-to)D

-

sn

l,¡'z -

tu

I

t.,

_ s,l for the

single step, rvhereas

for the

murtistep c'se

it is

definetr

by tt-tu f ,',-t.u--, lt ..:[?',:ål,:6.,,.

L r;- t\-, J : "':L;;

-r.

J

tlris

eqnal,ion

for

r,,

-lo,by

using ilre

fact ilrat 1.r_t,:

'q10.

k is

cas.y

to'sec

ilrab

2't-

- t, -

(1

- o')? e.'-,.

1 __orJ"

c(ú*)

: li1¡

s( t1 t."

-

t,,

llten

x,e solve

-?'1 -1,,+(1 _0r)

n eoo (so

- úole

x""riårt:"rfirflrhe;s-order

and

asvmptotic e''or

bounds

for

rhe mrdpoinr

9(fn*r)

:f $^nr- s,)s* åa*r" -

r,)q

1

p

_K ,

(úo * an)

5' SOITE CIIÀIII\L.'TIìISTICS UNI)IìIì 'r.IID DtrI¡INIlION OI,' S-ONDììI.

To find thc sufficient conilitions of

orcler

of

conr¡erg.erce, ohen

J*,1¡,iiî,?i;nttv

srrsgcstcd

a nà*l-ïcri'ir,ion-ãi

"'ìr"""åt

convcrscnce,

\Ye rvill

neerl

the

clefinil,ions

:

111, 121

Dur¡rnrrrox 1. A

se*quence

of

iterates

1i,¡, n,) 0 in a

l3anach space .Y¡ is saict

to

converge

rvitï óìáã;p-;i to

a

point

æ* e

X3 ir

Il û,,+t

-

ø*

il (

cl!

r, _

n",,!lp

for

snralter solne

or c>

equal

0.

rvrre'c.c

ro l. wc is usuaily i,,iti;üd"Ë a funcbiou ìç**¡

t

y,. of ør'.iilr the no'm of

c

K

2

-g

T 1.) üu

{

su)

-tK

(s" t")2

t' T

u,ru. -

r.)e

o

+ :

ú.

*

a")

Ks

8 (s*

-

tn) K2

n'[+

(f', 2

+ (¡. -

úo)?

:

*

,sn)

B-z

(ú"

+

so)

-

Cu (ún, sn) (s"

-

¿")9

3-c. 1140

(7)

150 l-). ()ìlcn nnd l. Ii. ."\r'gllos

rirþ

L-2lt

l'-l

so

b¡r

clefinition

I, p :3

¿rucl

Onr(l'F)

: lirn

C¡¿(f,, su)

:

_

Ire1, u,s noì\¡ cl

trie

olre.atä;,

'Ë';n"'lTTiJ' :

'2õ, v(s)

: ! for all s e f0,

1l

; anrl

clefite

n( o-rb

--- ;(t)rìt -

e(s)

+ l.

_ ìiote

thaü eve

(6.r).

vvcl'J¡ Zel'o of

the

equàtion

P(r) :0

satisfies

're

eqnation

_

Set ,rô(r) __

l.

trc.ir ¿tìi

eî'Ëi

, ri.',11,f1,11,.,,1t'Ë

fftliìiiilî .?5lå",l]ä-t f;:,]",ìiiT:,

rr,éer cr-

ilr :

,1¿

:

2l),1

,r^^.

|

(__-

u, ,

0<s<r lJ.ç -l-.

¿ l:'l)'lln2 :

.3465T8õ9,

P: ill"(1)-,li :

1.5B0SÐ42].,

\ > ilP'(7)-'"(1) li >

ln

2 :

.2651s7r07, À

:

.61993304õ,

I :.25.160J18 çl ,),

l3

and

Itcratirc lJcUlorì

151

f-

I(2

- xr*

D

:

C,,(F),

4 1

r

fr(

I

s

\\'lrere

Cr(t*) is

definecl

in

[11].

6. oN 'r'rìrì sor.u.J.roN oF

,\

(ì..ù-s$.lì[rÌ,?,y,1ì.]{ï¿ol,ìår,"r,n" LQU^r.roNs .{nrsrìG

rn this

section \ye rÌse Theorern

4.1 to

suggest

ne\y

approaches to

fhc sol,tio' of

cluadratic

integral

equations

of ùrä fo''

(6.1)

¿(s):

u(s)

f

Àr(s) q(s, ú) æ(r) r1¿

,_l

tt]g

spac_e

xo : cl0, 1l of aII functions

continuous

o' ilre inte'r.al

i0, 1], l'itìr nolm

ii ø ll

:

oma,x lr(s) l.

Frcre

we

assurne

tirat

7,

is a real

nurnber callecl

the

(¡albedo, fol, scatteling

alcl the

ke,rnel q(s,

/) is a

continuous

function,of t*o .,Àrin¡t.s s,

ú

l'ith 0 (

sr

I < 1

ancl satisfying

(i) 0(q(s,¿)<l,o(s,Í<1;

(ii)

q(s,¿)

|_q!,s) :1,0{s,¿<1.

'I'he

function

y(s)

is a

gir.en ancl

finall¡.

a;(s)

is

t]re

unhnol,n f

ììcluations of this

type

are clos drasekhar

l7l,

(Nor.el

prize of

ph¡

of radial,ive transfer, neutron trairsli

[1], l2l,

t7.ì.

lhere

exists

an

extensive

literature or

equatious

lihe

(6.1) unrlel various assumptions

o!

the rrerrrel q(s,

ú) and

À

ii

a real or

coùplex i*i*

be,r.

one

can

lefer to ilre

recent ruo-r,r.'ii

l1l, [2]

anct itre

ret""ef"us-tlió"ã.

l{ele

rye dcmonstrate

that

Thcorern

¿.f ì.iä

t-tré

ite pror.ides existence results for (1.1).

lVloreo¡,er

ilr

(2.1) convcr,ges faster

to the

solution

than all

the

Ilurthelmol'e

a better infotrnation on the

locatiolof

thcsolu.l,ions is

gi'e'.

Note that the

computationar cos1,

is not higher

trraìi iire corresponding one

of ltrevious

rnelhocls.

rìor sir'ìrlicity (rvithout loss of generality) rve l,ill

assunre

flrat

q(s,ú)

: s+¿ i . for all o (

s, ú

<

1.

Note

that q

so clefinecl satisfies

(i)

ancl

(ii)

above.

ri :

.311111702 0

:

.173133865.

11l, i2l).

TìIJI.'ERENCES

I ica t iotts lt¡ C ha n tlr ast L, lto r

, 275-292. 's uttd tclaletl tqrr<t-

,al n cqualiotts arisíng in neulron Iransporl.

!";

l,tn' ;,

",,

",

ol., *, ",,,

i *l

rn e t h o d s,Á,ìi\, G : 1

uillt nondif ferenliablc antl ptek crror cslitnales, Ie.þr nonlinear operalor eono^t,Íott-s on<! Iheir rtis_

,,,'i"',,

*,ll)'Ìll':q :

nF ( l-e s 0)' 2 6 5

-

2i; ¡

"'

"' "

r Durre(n spaces, Applíctl ÃIalh. út ()ontp¡1!, . Nerv yorl<, 1g60.

csli.ntolas oI Iiittg,s ilcrttlio¡t ptot,cdurcs

r trIaut., åc: 13

i

4) (1ossr),

zZS:ùî.

(8)

í52 D. Chcn anrl I. Ii. r\r. gyros f4 9. Clren, Dong l(attforouich-Ostrouski coiuetgcnce llrcore¡tts atrd oplinlal et¡ot l¡ounds f or Jarcall's

iteralioe metltods, Intern. J. Computel Mârh., 31 : (3 + 4\ (7990),221-235.

10. Chcn, Dong, On lhe conuergence of ct class of gcneralizcd Steffettsen's iteraliue prccedures dtrd eÍror analgsis, Inter'. J. Conputer Math., 31 (3 -l- 4) (1990), 195-203.

11. Ctren, Dong, On n nen clef ittiliott of order of conuergetrce in general íteratiue metltocls I : One-

poittt ileraliotrs, suìrmitted,

12, Chen, Dong, On (t neù def initi.ott of order of conuergence itt getrcrttl iluatiue ntethods II : Mulíi- poittt iteralions, submittecl,

13, Dcnnis, J. E., On the conuergettcc of Netulon-likc melhods, In Nr¿nr¿ric¿rl Methocls for Non-

linear Algebraic Drlualiotts, edited by P. lìabinorvitz, Goldon and Blcach, Nerv Yolk,

1 970.

14. I)ennis, J.8., Touartl a wtified colùergence lheorg for Neulott-likc methods, In No¡rldnear Funclional rlnalgsls and Applicaliolts, edited by L. B. Rall Acadcmic Press, Nerv York, 1971.

15. Glagg, W. ll. and Tapia, R. A.., Oplimci Error ßouncls for IIrc NewLott-I{ctntorouiclt Tluorent, SIAM J. Numcr. Anal., 11 (1974), 10-13.

16. I(antorovicb, L, V. and Akilo, G. P., Futtctiotml Analgsis in Nor'¡n¿d Spaccs, Pcrgernon Pt'ess, Nel' YorÌ<' 1964.

17. Ortega, J. l\,I. and Rheinboldt, \\¡. C., ffernfiuc Soluliott of Nottlincur Equaliotts itt Scuetal Yariables, A,cademic Press, Nerv Yorl<, 1970.

18. Rlreinbolt, \\¡. C., A Unified Conuergence 'l'hcory for ¿ Clr¿ss of lteratiue Processes, SIAÀ.I

J. Numer. Anal., 5 (1968), 42-63.

19. Ostrorvsl<i, Ä. X,I., Solttliottof Equatiotts itt Euclídean and Banach Spaces, Academic P.r'ess,

Nerv Yolk, 3r'd ed., 1973.

20. Traub, J. F. Ile¡aliue lt[elhods for tlrc SoluLiott of Equalions, Plenticc llall, Englonood

Cliffs, 1964.

21, Taylor. A. E., /llrodltclion to ltunctional4.tralysts, I4tileg, Neu Yorkr 7957,

AEVUN D'ANAI,YSE NUìII1IIIQUII NT DE TIIúONID DR L'APPNOXIMATION Tornc 2J, No 2, 1C$2r pp. 153-fG5

SUR LA FORMULE D'HERMITE

ION ICIIII{ ct. GÌìIGORE AL}ìEANU (Bucharcst)

Received B X 1992 Departmenl of Mathemalicql Scí.ences

Uniuersilg of Arkauses

tr'agelteuille, ,4.r,lcansos 72 701, USA Deparlmenl of Mathematics

Cameton Uniuersitg Laulott, Oklahonta 73505, USA

Dans cet ouvl'age, en

utilisânt

cles résultats

de [4], [5] et

16l, nous

présentons une

formule

de

quadlature

trigonometrique de type

Hèrmite et une

nou\¡elle mêthocle

pour

déterminer dans

un point la valeur

du

polynôme trigonométriquc

cf interpolation.

On sait

que

ftr,,[x]':

{årtucos(ix) *år,sin(ix)lø¡, b¿elR pou' .r, "}

(,.*n. ñ,,-,[r],:

{å(,, *r(+") *

f

b¿sin

(r+ x)l o,,

t¡,

R pour i.*Ì)

est

un

espace de

llaar

sur

tout intervalle la, bl

avec b

- a 1

2n.

_

L,'opérateur clifferentiel associé

à

I'espace

Rr,[X]

(resp.

à

I'espace IRr,,_r¡x1¡ est

(1) I'rnr: D(D'+L2I)(D2 +2,1)...(D, {tr,2l)

(rcsp.

(2) Lzu-tt:

(D2

+

(712)zI)(Dz

+

(312),1)

.. .(D, | ((2n,-I)12)rI)).

= Lenoyau

9ru (resp.

0r,-r)

associé à I'espac"

ftru [,T]

(resp. à I'espace

Rrn*r[x]) \'érifie

l'égalité.

(3)

0¡(r,

y)- 2'(.r"

(+))i, ¡ ena-t3n

¡+1.

l

TrrÉonrìu

L

Soi,ent

E

u,n esltace de

Ilanctcll,

fiot

frt¡

.

.t

tm¡ m

+ I

poitxts tlistitrcts

cle

linteraalle la, bl,

t(no,

nr,..., n,,) un

élëtnent cle

(hf*)'l'*t /,,\

et (f6o),..,,1Ú'o),...,,fr,.)

,...,|ft' ,...,Íf1, ,...,1Í1,,,t,

ulL 1)ecterLr tl,e -D"+'(rr

* I : :

n.t).

Alors iL

y

u un, seul polynôtne trigotrotnëLriqtrc Tv

à, coefficients dans

Il

atsec

O(fy) < n

tel (fxLe

(4) (Tr)u)(n):lr?, j eO,

m

ct i

e 0,

v.¡Qt¡::n¡ -

I).

Referințe

DOCUMENTE SIMILARE

We provide a semilocal convergence analysis of an iterative algorithm for solving nonlinear operator equations in a Banach space setting.. Using our new idea of recurrent functions

Numerical examples validating our theoretical results are also provided in this study to show that DFM is faster than other derivative free methods [9] using similar information..

al., see [2], [3], [4], have considered a class of inverse problems for ordinary differential equations and provided a mathematical basis for solving them within the framework of

P˘ av˘ aloiu, On a Chebyshev-type method for approximating the so- lutions of polynomial operator equations of degree 2, Proceedings of International Con- ference on Approximation

In the very recent paper [5], Strichartz investigated the behaviour of the arclengths of the graphs Γ(S N (f )) of the partial sums S N (f ) of the Fourier series of a piecewise

Further the theory of singular integral equations and boundary problems deveìoped intensively in such directions as, for example, wàakening conditions on the class

In this section, we present some applications of our results to obtain bounds on the solutions of certain differential and sum-difference equations... Inequality

iteralioe metltods, Intern. Chcn, Dong, On lhe conuergence of ct class of gcneralizcd Steffettsen's iteraliue prccedures dtrd eÍror analgsis, Inter'. E., On the