• Nu S-Au Găsit Rezultate

View of On the numerical solution of a nonlinear parabolic equation

N/A
N/A
Protected

Academic year: 2022

Share "View of On the numerical solution of a nonlinear parabolic equation"

Copied!
5
0
0

Text complet

(1)

MATIIÞMATICA

_

REVUE D'ANAITYSE NUMÉRIQUE ET DE THÉORIE DÞ IT'APPROXIMATION

L'ANALYSE

NUMÉRIQUE

ET LA THÉORIE DE

L'APPROXIMATION Tomo B, No

1'

1979, PP.

B9-97

ON THE NUMBRICAI, SOI,UTION OF A NONLINEAR

PARABOI,IC BQUATION

'by

ERVIN SCIIECHTER

(Cluj-NaPoca)

e

conditions under

which the

expli-

a

solution converging

to

the

very restrictive and

exclud'e

f viéw. It is the aim of

the under much

larger

and natu-

l.Formulationoftheproblems.Conçiderthefollowingproblem:

(1.1) *: orlø) oo ? : o X

10,

1[

(1.2) u(x,'0):uo(x) ßeÇ2

(1.3) u(x, t) : ut(x, t) oo

S

: o x [0' T]' As in [5]

we suppose

the

following assumptions

to

hold :

(i)

øo

e C(o)

uv

e C(S),

uo,

ut 2

0

(A) (iÐ ltq e

Cz(Ra),

9@)

anð' 9'(u)

> 0 for

ø

>

0

ç(0)

:

9'(0)

: 0, 9"(u) Z0 fot u à

0'

we also

sllppose

that o (Rr,(for sirnplicity)

and

that'this

domain is

bounded, regular and convex.

(2)

s0

(1.5) (1.6) (r.7)

We

called

a function u e L-(Q) a

solution

of (1.1)-(l.B) if

(i) # = r,e) i: r,

2

(ii) conditions (1.2)-(1.3)

are

fulfilled (in the

generalized sense)

(ili)uZ0

(a.e.)

onQ

(iv) For

any

f -

C'(Q) such

that

,/1",

:

0 (1.4)

3 ON THE NUMERICÀL SOLUTION 91

IIere

(l;(h)

:

u(h)

-

y(k

-

1) '

uo¡:

üolQn,

üzi l, X

{Þoc'

ho:0' 1' "

'

' K} -'

R'

ur(x,

t)

Í: ut(x*, t), x e|'r,,

where

x* e

ðÇì

is the

neafest

point to ø (or

one

of them, if there

are

mo

ls).

M a

posítive coltstalrt such

tirat

üo' nd

exact solutions we

shall

make

use

- of the

following extensions:

a)

Constant exÌension.

This

attaches

to

each

function [/

defined on

the grid points of (or Or) a step fu'ction Û

d.efined

on the

domain

Q.CQ (or Qr) by:

U(x, t) : U¡¡(h) (x, t) e

,,i,¡j

x fhr'

f 1)r['

b) Multilinear

extension.

This

assigns

to the grid function IJ a

con-

tinuoús function U'

defined bY:

U':QrnR

U'(x, t) :

U¡¡(h)

¡

(Ut¡(h))-,(x,

- ih) +

(Ui¡(h))',(x2

- iD + a

(Ur;(å)),(t

-

kr)

¡

(U1(k)),,",(xt

-

ih')(x,

- tD + . + (U4@)),,t(4:- ih)(t - k) + (Ui¡(h)),,t(xz- il')(t -

k'),

(x, t) e

lo¡¡

X \tu,

f 1)t['

For a

detailed.

study of

these extensions we refer

to [3]'

2.Basiclern¡nas.In[5]weprovedthefollowingtwolernmas:- I,em ma

2.1. Suþþòse

that

assumþtion

(A)

hold's ønd' tkat

^:4 *v'(M) =t.

TkentkesolutionUof(1.5)-(1.7)sarisfi'esth'e'inequøl'ity:

0su<M.

I,

e m m

a 2'2,

Suþþose

tkat

the hyþotkeses

of

Lemmø

2.|

are fulfill'ed' and assume tkøt:

(i) u¡ e

C\(Q) ønd' A'u,

Z

0

on

dl-;

iii¡ *t is

nònd'ecreasing-

in t on

10, T I

ERVIN SCHECHTER

2

ôç(u) ôx¡

_af ôt¿

2

af

D

At

u d,xdt

f

.f

(x,

0) uo@) d.x

:0

a Õ

HereSr:SU{*,T)lx=Q}.

Remørh,.

condition

(1.2) makes sense. rudeed,

it wilr

be shown

that 9(u)

belongs

to Z(0, T;

111(C))). So

by

(1.1)

it follows that L e L(0,

T;

l^-'(9))._ThÞ

1.2,

ch. r). we

implies also

note that u that u e C([0,

has *é11 defined

Tl; Ht(a)),

tràces (see

e.s. oä 5 l4]. ivhich

f,emmade-

pend

continuously

on I

(e.g.

l3l p.

70).

pro lu.,'l'='Bi;i; l;ffiä,'äî;f J8'i#; î'ö:'?i

ord

explici-t_numerical sct

"-"

usdoôiat"a

to (1.f

(1.8)

we from

[5] :

R¡: {(x, t) e Rslxr:

h¿

h, t :

ho.ç,

k;:0, +.1, +2,

. .

., i:1, 2;

ko:0, 1, "').

where

h, , > 0

are th.e mesh-sizes,

.oij

: {(xu

xr)l

ih<x, < (i + t)h, jh <

xz

< (i + t)k}

O, :

LJ^.¿

j, lt -

ôO¡, Q,,

:

Qn

X

10, 7-].

We shall

use

the *1"

""rgra" -a, the

mesh-points

of R,

belonging to these. domains,

e.g. Q¡: Q¡ î\Rn, etc. F'or brevity *" shull jso"set

!,¡(h) or eve'

U(,ë) instead of.

U(ih, jh,, tl'').

Now

the

difference problem

is the following: '

'

Ui(h)

:

Are(U(Þ

- 1)) or

Qn

u(0) :

u"h

U(k)lrr: üz(*, hr), x el¡, h:0, 1, ..., K:

T

I

(3)

92 ERVIN SCHECHTER

Then

(j) u,(h) > 0, h : l, 2, ..., K on

O

(ij) "to'Eu#l { Mm($.

Qh

IIere

Õr:0,ì\{(r, K.)l.x =

Õr}.

Remørh.

Condition

L,uo

2 0 can be

replaced

by have already

mentioned,

conditions (i), (ä)

are too therefore prove:

Lemma2.3.

Suþþose tkøt

(i)

Asswmþtion (.L) kold.s a.nd.

u, e

Cz(Q);

(ii)

À

( l;

¡i11¡.-lf-

\/ðt

exists and is bounded

on S;

(iv)

g(co)

:

oo.

Tken tkere exist constants ko, C

> 0

suck tkøt

(2.r) ,k'ÐlUlk)l {

C,

for k x

tt,o.

Proof

: Let e>0beaconstant anð.V¡: C)*R a functionsuchthat

(2.2)

LVo

2lAe(øo)l f e on

O,

VoÈ

Z q@o)lr,'Vo2 0, Vo =

e¡@).

We define, aoby vo

:

g-r(Vo)and u, : S

-*'R

as follows : u1

è

0, u1 G C(S), 7arlôt exists

on S

and

*@, t) >

c

I

e,

t e lo, 1[,

ar(x,

o):

r/olr

ôt'

where

c àmaxpur/ðtl.

With the

s

aíd of to, at as data

functions we construct

by

means

of the

scheme

(1.5)-(1.7) the

discrete solution

'V:Q,+R'

Thus taking into

account

the

above

Renark

we-

get by

l.emma

2.2

tine following inequalities

and

v¡ Z ot

Qr

'ckz

Ðvlu¡ > M'm(a)

Q,r

b 0N lHE NUMERICAL sÔLUrloN

For

convenienceweset U;(Þ)

:

Ú(h)

andlet us

show

that

D

ltTdi(l)1,<

D

7,,(1)

T^

o[

rndeed

by (2.2) lor h1ho,

Lu1øo)

>

lA¡ç(øo)l' Hence according

to

(1'5)

we

get

(2'3).

-SupPose now

that

lüd,(Þ

- 1)l < DZü(h -

r)

th

93 4

(2.3)

aq(øo) >

restrictive,

0. As

we we shdll

(2.4)

and prove

(2.5)

flr7r,(Þ)l .õl',h <DV;¡(h)' From

(1.5)

we

deduce tlnat

(k Z

2)

(2.6)

, , U¡(k):U¡(P-,l) +Ar(ç(Þ-

1))

- e!(h'2))'

consequentlY

(2,7) Úi¡(h):

(1

-4 #r,oþ-

r))Úq(h

+

1)

+

+ h,lói+r,,(Ë -

l)

t;¡r'¡(Þ- l) + 4;-t'¡(h - l)Ú;-ui(å - t) + I 4i,¡*r(h -

1)Ú¡,r+r(h

- r) *

,r,,-.rru

- r)tt,¡-r(A -

1)l

and similarly for V.

Here -Q.'

means an intermed'iary value

between

[1U(å-f ijj'""a

e'(U(h

- 2))' Foe

example:

!i¡(k

- t) :

e'(Ut¡(h

-

2)

+ s(Uü(h-

1)

-

Uû(h

-

2)))'

0 e

10, 1['

From

(2.7)

we get

à

1),

D|tr,,(¿)l sÐlÚ,i(Þ 1)l +;Ðe'(tlt¡(k - l))lÚ¡¡(Þ-

1)l

q,'

Dv,¡(H

S

Ð

7,¡(e

- l) + ]fiv'Ú',(h -

r))Vq(Þ

-

1)'

-dùr' 4, h'

rn

Since uol¡

è

uolr ^nð,aff

I

Lu'

on S;

ho can be

taken

so small

that

ur(r,

t* ") S

ut(x'

t) if t S .o : ffi'

j: !i

!r ,¡

."r' i

ì:, :r'

(4)

g4

in this

case

for k <

ho.

ÞRVIN SCHÉCHTER ON THE NUMEiìICAL SÓLÚTÍON 96

6

I

A'i(þ'- l) <

7rr(Ë

- 1) on l,

which

irnplies

e'(l¡¡(h -

1))

<

e'(Tn¡(h

- 1)) on lr.

Here

.t¡¡.(h.- l)

=.U,¡(h -2) +

O(Uti(Þ

- 1) -

U¿¡(k

-2)), 0

,.=- ,10, 1[

and

similarly lor

V ¿i.

On

the other hand

since ôarf 0t

7 c on S ít

follows

that Itü(/è)l S

Z;¡(p)

on t¡, h:O, t, ..., K.

Ifence

lv'(I,i(t, rn - 1))ltn¡(h- t)l <Ð -q' ' ç'(7¿¡@_ r))Vtj(h-L)

'r\

'so th_at

(2.4) implies (2.5). Finally, if we

observe

that on the

discrete boundary

Ç

Dlu;(A)t S Dvlnl.

our lemma follows

at

once from Iremma 2.2.

Corollary.

Under

the

hyþotheses

of

the aboae Lemrnø:

(2.8)

"k,Ðl,p(u(h)))-tl <

c,

ah

C being ø constønt indeþendent of

k

(andr).

This is readily

seen from

þQ

@)')

:

ø' (h)lu;(À)

I S

e'

(M)lui(h)'l

and Iremrna 2.2.

rn

order

to

estimate

the

differences

in the

space variables we give:

Lemma2.4. Let !_,QonV^be the solution of (l.S)-(1.7)

and suþþose

lhat

cond.itions of Lemma

2.8

ørc futfilted..

Tken tkere exist

constønts

c,

ho,'ind,eþend.ent

of k (andt)

suck tkat

Here

Ql.

is

a þotygona.l d'omain

uitk

si'des þørallel to Oxr,

Oxr;

conuex

in

both d,irections ønd' sati,sfying lhe condilions :

(u) Õi c Q*,

ç¿*

c a

(l)

The sid,es

of

âQl, contain nod'es

of

R,,'

The proof

becomes identical

to that o! t5J

(Theorem 3.1),

if

instead

of

l,emmã

2.2

we make use

of

Lemma 2.3.

I,em rr.a2.5. ([1],

Theorem2.22)

Iel 1( þ <?

ønd'

let-Kç-!''(9)'

Suþlose there exists

à'ttqutnrtlQ¡\ oÍ

subd.oma.ins

of

Q hauing the follouiøg þroþerties :

(l) For

each

j, Q¡CQ¡+ti

(ä) For

each

j the

set.

of

restrictions to Q¡

of

the functions

'in K

is

þrecornþact

in

Lo(Q¡) ;

(äi) For

eaery e

2 0,

there exists

j

suck thøt

\ t"tùlþ

d,x

<

e

for

eaery

u e

K.

0\0i

Tkeu'

K is

þrecomþøct

in

Lþ(Q)'

3.

Convergence

o1 the numerieal

solution.

Existence of the

exaet

solution. îhe

"lemmas

of the previous

section show

that the family

of numerical solutions

U

(depending

W!(Qr) norm, i.e. the

scheme. (1.5 ove have shown

that it is

stable

in We

are going now

to

discuss the

and prove that the limit is

the

mention

that,

though our argumettts refer

to

subsequences of. approximate, solutions,

théy

reniain

valid-for the

whole

of the

seçluence,

in

view

of

the uniquenss

of the exact

solution.

According

to the

maximnm.

principle

given

in

Iremma

2.1,

we have

o<Ú<¡z, o<u'(MonÇ,

if

U is extended

in

R,,\õ,,, by any valües which do not exceede

M.

Consequen- 11y,

botlt

farnilies

of"fuicîions

are bounded

in

Lo(Q),

I S

ø

S f

oo' Hcnce

iti"r" is a

subsequence

of

steps

{ft,} C Ur}

so

that

U nn as

well as Uí,

convefge weakly

to 1 e

Lr(Q),

say.

This

limit

is common as

it

was shown

in

[B]"(see

alsó t5l, I,"*tìrä 4.3). In the

sequel we

shall rvrite, for

bre-

vlty, U,

insted

of

Unn

Using the

discrete

variational formulation of problem (1.5)-(l'7), we

have

þroved [5] the

following theorems:

N

I

K-1

(5)

ON THE NUMERICAL SOLUTION 97

96, ÉRVIN SCHECTITËÈ B

I

TrrEoRÞM 3.1. Suþþose that U

rQ, -' R is

the solution

of (l'5)-(t'7)^

ønd,

that

the subsequeôce u u

is

ckoseú,' as above. Assume tka't cond'itions of ' Lem'mø

2.3

øre

fulfilled"

Then

for k -

0 :

(i)

q(Úr)

-

q(X)

in L(Q'), and a.e.

orl

.Q',

VO'C C

Q

(ii)

e(Ûo)

* ç(x) in

LL(Q'),

VO' C C

O

(iii)

e(Ûn),.

- +*, i : r, 2, in

LL(Q',), Q',

Vcc

O.

Here

Ç' : O' X ]0¡ T[, -

designates

the

weak convergence'

while C C

means

the strict

inclusion.

THE9REM 3.2. Assume tkat cond.itions of tke þreuious theorem holil. Then

(i)

À

e L*(Q);

(ä) t

satisJí'øs (1.4)'.

From

Theorem

3.1 it follows llnat 09(a)/xr - L'(8), i:1,2, T!

is

also clear that y ) 0 on Q and that

id.åâtisÎies

condition

(1.2); since

U t,

*

X a,e.

on

Ç'.

In

order

to

show (ii)

it

suffices

to write the

difference problem

(1.5)-

(1.7)

in the variational form

(see

[5], (5'1)l:

I 40, -

ip*,(rt)$,,

-

õ.^(u)Ç,")d,xdt

I

a

+lã"@)Ç(x, 0)dx: 0, Ü e D([0, Îi x o)

o,) and pass

to the limit.

THEoREM

3.3.

Suþþose

,tkøt w is

the solwtion

of

þroblern

'(1.1)-(1.3).

Then 9(-[J)u

-

e(u)

in L(Q.

Tke sarne

is

t.rue

[* Uí. -

-

piòoi."Co"Jibét

r

s"qüêo"" of subomains

as in

l,emma

2.5.

Suppose

K:{q(Ûn)}u

(or e(Uí)),

t

bounded

Á WI(Q)

and

hand by

Lemma

2.1 K on any point of

Q. Thus completes

the

proof.

Rem ark.

Sinae the imbed'd'hing

wi(Q) -

Lo(Q)

is

cornþact, accord.,ing to th.e Reltich-Kond,røshou theorem,

for

any

q

suck thøt'

l<q<2

(in our particular

câse

r,: 2)

the conaergenae

from

the øbove theorem tøhes

þlace

in

øny Lq(Q),

I

S q

<2.

REFDRENCES

Press, 1975'

"ttnJti'

iopics

in

Numerical Anaysls

IrI'

6.

true Problems

of

the Møthematical Physics'

on d'es þroblèrnes ø'utt limí'tes non li'néøítes'

Exbticit Difference Aþþrorimalàon to Solue the

¿¿'íïi "püíiu¿i

a E quàii on s' Mathematica' vol'

RecelYetl 25, ll. lÐ75.

Føcullateo de Matemøticd' ø IJ nôaer sitã'li,i, B abe ç -B olY ai'

Str. Kogdtrnàaeønø Nr. 1

Cluj-Nøþoaø

?-Mathematica-Revued,analysenumériqueetdethéoriedel'apploximation_Tome8,N¡.1/1979

Referințe

DOCUMENTE SIMILARE

Toate acestea sunt doar o parte dintre avantajele in care cred partizanii clonarii. Pentru a si le sustine, ei recurg la o serie de argumente. Unul dintre ele are in atentie

2 Referring to the constitutional regulation of Kosovo regarding the form of state regulation, we have a unitary state, but in practice the unitary state

During the period 1992-2004, for criminal offenses with elements of abuse in the field of real estate turnover in Kosovo there were accused in total 35 persons and none

The Constitution of the Republic of Albania regulates three situations that require extraordinary measures: war situation, state of emergency and state of natural

1 The Special Chamber of the Supreme Court is a special court responsible to deal with privatization matters. This court is established by UNMIK Regulation, No. 2 Privatization

Abstract: The Canadian Immigration and Refugee Protection Act provides that one of the objectives of immigration is “to see that families are reunited in Canada.” The Act

, Convergence of the family of the deformed Euler-Halley iterations under the H¨ older condition of the second derivative, Journal of Computational and Applied Mathematics,

That is why, in Talisse view, the argumentation of Habermas’s theory concerning the legitimacy of political decisions is circular: “it justifies democracy only to those who