• Nu S-Au Găsit Rezultate

View of Best approximation by Chebyshevian splines and generalized Lipschitz spaces

N/A
N/A
Protected

Academic year: 2022

Share "View of Best approximation by Chebyshevian splines and generalized Lipschitz spaces"

Copied!
5
0
0

Text complet

(1)

B6 PAULINA PYCH

B ¡,4ATHEMATICA

_

REVUÐ D'ANALYSE NUIIIERIQUE

I4T DE THEORIE DE L'APPIì,OXIMATIOII

l"flNrtLYsrì

NUn'AÉR{QUE ET'

nrr T'ÍrÉoRr}ì FE

n,rLPPRoxrnfirtrnoN T'ome

5,

No 1e tr$?6, nrp. gZ_Sõ

and for 12

|

( 2n2

l,o,er(r) l<{

| ",,r"r

"'-t ¡t+t

if 0( l<

æ,

if

f t

n.

Applying_ these inequalities

and

arguing as

in the

preceding tr,vo sections

s'e get the follos'ing

statements,

't'FrEoREl{

3.

Su.þþose that

f e I)*, r> 2.

Tfu,en,

1s,,,,

(f ;x) _

J.@),

. ;*å *V,*,^i),

nt

caclt

þoint x

aJøerc lJ¿c cond.it'iott.

(2)

hold,s.

'r'IIlìoRElr '1. Giuctt, au'yt J^

e I)'t',

rsc ltot,a

.[',-ïJ, if r:1, ,l/, " I \

r¿ -i-lJn

if r>r.

BTiST APPROXIMATION BV CFIEBYST{EVIAN'

SPLThTIìS

AND GENERAI,IZED I.IPSCIJITZ,SPACES

by

KARL SCIITìRER (Aachel)

RIi]IIlRENCES

first a direct

theorem

is

proved by JDRoMD

.l2l in

tlne

Cfa,bl

case to methods

to in

l-/1,

it is

sirorvä

tbat ;

moduli of continuity

introduced ces.

fn thc third

section relations the ordinar)¡ ones are establishecl.

yields

the

desired characterizãiion

1.

A

elilecú theoreila

(l) sp(Z,Â, *):{s - LZ(ø,b): LS(x):0, x u (x,_r,r,), t( i< ¡/,

r¡'here

A is a partition of the interval

fa,

b),

i.e, ill Aljancic, S., Bojanic, R.,1'o,ric, \[.., O, tltc degree of co*uergence of tejér-

Lebesgul sums, L'Enseigfiernent tnathént,atique, tõ, 21-28 (1969).

[2] /{NBapüeliulsH¡u, A_, f., O cg.n.uupoaanuu cotrpnet{eHHotx pnôoc u pnôoe þgpoe

_.,[,an.cnga, Tpy¡sr Tóø,nnccr<oso Marev. I4uct., 22, 203-225 (19õfi).

l3l , I'lunrcepatt !,aumga u HeKomopbrc lonpocbr us aHarlLlaa, Tpy¡u Tó¡,'ruccxoro Mareu.

I4ttct., 26, 273-372 (1958).

[a] S a k s, S , 'fheory of lhe integral, Nerv York, 1937.

iSl 1l a lr c r s k i, Il., Sun¿mability of d,iJfercntiated inlcrþolaling þolynomials, Commentationes Mathernaticae !3, 197-213 (1970).

16l V.¡r r rr u o n ll. Jl., O rtpuíttuucenu.u q\gnx4uti, Cl6upcrorä Mareiv {ypxan, ó, 4lB- 437 (1e64).

ll7:, Z:'g rn 11 1r d A., Tri.gonometric scries, II, Carnbridge 1959, lÌeccivcd.31 I l97l

(2)

BB KÁ,RL SCHERER 2 3 BEST APPROXIMATION

89 (2)

L: ø:

%o

<

x,r

<.

.

.{

xu

:

b,

4: min (*r-*,-r),

Â

:

max (x,

- x,-r),

L is a differential

operator

of the form

(0

<

m

<

n,

-

7)

(3) L:D,_t...

t)o,

rvh^ere

I¡,Í@) :d ldxlf (x)lrøt(x)l witt strictly positive functions

u¿(x) =

eC"-í

[ø,

á]. Then there

exists

a

basis

of the null

space of

Z

of the fórm

uo@)

:

ryto¡*¡

of functions {"f*} in c"fa,bl which

converge

in Li(ø,b) to an

element

f e Li@,b), it is

seen

that (7) holds more

generally

for functions

in

Li

@,

ó), 1< þ <

æ.

The linear approximation method of

JERoMD

l2l (defined

more

generally

for

nonsingular

lineai differeniiãl òperator u'ith suitable const

describèd as follows :

For _each

( e points lr({),

. .

., t,(Z) be

consecutive points

of the

mesh

A< lrr- El< 2A,; lt, - ql < þ,-

El

< ...

and let

90, . .

.,

Ên

b" any (non-trivial)

solution

of the

system

\oui

(to)

+

.

.. I þ,ui

(t")

:

0

(4)

ur(x)

:

uo@) ur('cr)d\t

a

E E,

u, -r(x)

:

uo@)

a

91

u, t(€"-t)d\"-r...d4,

þoui(to)

+ ... *

g,,ui,þ,)

:0.

Setting

lo(E)

: {, the

approximating

spline

S(ø)

:

S(f

;x) is

defined by The systerr

(uo,...,uu-r)

forms an extended complete Chebyshev (E.C.T)

system on la,bl (rcanr,rx

14,

p.2761), in particular the

Wronskian

W(uo,ur, . .

.,'u,-t) is strictly positive on la,b],

i."., (B) S(ø)

: u(x) -f ^¡(x,l)Lf(l)

d,(

uo@)

u,-

t(*)

with

u:(x)

being as in (7)

and

y(x, €): ô(r,

E)

-

(1/p.)

(5)

> 0 (x e lø,bl)

n

D"uo(x)

... D'u,-lx) I

j:0

p,6p,4¡

Denoting

by ui the

elements of

the

last column

of

W-|(uo,wr,

one sets ,1'(r-t

Obviously S(r)

belongs

to Sp(Z,A,z) by

(6).

:nnoup [2] has

shown

that É g¡îp,t,¡ has compact support in lto,t*l and that

þ¡lþo< C

6@, e)

: 0(*,4), 0, x<(, x 2

E

forl(r<ø

ded.

By

theindependent of

the

choice

of

{1,} provided

A/A

remains boun-

Taylor

expansion (see (6))

òle

has furtheimore o(x,y)

: (* - y)1,'l@ - \)! f

0((ø

-

y)"+),

rvhere 0(x,

1):D

uo(x)ui (E).

Then by

definition

h:o

(6)

o',6@,

{)

¡:B

l-: ò7,r-r

(0 < _r

< n -

t)

so that lor f e C"lø,bl the

generalized

Taylor

formula

so that one may

estimate

(e) tf @)

- s(/;ø)t

<

x@,4)tLÍ(E)tdt

(7)

l)

l@) :

u(x)

| \6ø, zlr¡t|)aå)d.4

)

rvhere X@,1)

) 0

has support

tnlx - ll<

@

+2)L

and satisfies Z(ø,

{) (

( CoA,-r, the

constant

* being

independent

of x

and,

f.

From this one easily

concludes

(with

constants Cr,Cr) holds, *1"1"_O(6)

: up(Q ur(E) ... a,_l|) and.u(x)

satisfies

La(l :

- 0 on fa,bl

and D¡u(a)

: Dif(a), 0< /( n - L ny taking r

s"quénce

r

The coustants will be deuoted successively by Co, C,,

(3)

90 KARL scHERER

4

ll/ - s(/)ll- < c,Ã"¡¡ry¡¡, (.f =

L,L(q, b)),

lr - s(/)ll, < c,ñ'lvlll, (f =

L'i(a, b)).

By argunents of the theory of interpolatio' of

Banach spaces these inequalities

imply

(10) lll -

s(/)llp

< cÄ'ltfllp,

(.f

=

Lï(a,

ð),

1 <

1<

.o).

rndeed, by defi'itiou of peetre's K-functional o'c

has for

-f =

L'l(ø, b)

K(t,f-S(f); L,(n,b), L,,

(ø, ö))

< inf IlS(,f_s) _(í_s)ll,I¿lls(s)_sll*)

<

t u ¡,,!,, k, t)

( rnax

(Cb

C2)L inÏ

UIL(f

_

g)ll, _l_ ¿ll¿Sll_) <

e. r'L@, u)

( max

(C1, Cr)L"I{(t,

Lf ;

Lr(a, b¡,L"(a, b),\

Ø

But

since

I [l-r

ltt,K(t,-f ;Lr,

L.))d,tlt is a norln

equii,,alent

to ll/lle

(see

tf, p. fSSi), there

fotlor,r,s (10).

rlrom this

one obtains

in a stairdard

lnanner

for the

best approxi-

mation E*""'(f ;2)

:.=.,,îllt^

,,,,11.f

-

sll,,

the

Jackson-t1,pe iuec¡rality E*'"')

; :þ)

<

c 4K(t,

f

;

L¡(a,

b), r|i,(r, b)).

IJsi'g an esli'rate in [3]

therefore establishes

the direct

theorcrrr THrior{D}r

l.

Und,er tJøe cond,,it,ion that tloe

ratio

L,f

L,

rcruains l¡ouncl.cd.

th,ere holds

fctr

cach

f = L¡(a,b), 1< < æ

(or

/ ¿ C,i¿øj iÍ þ: *)

(12) E*'"')(.f

.,1) < c,[Ã"ll .fltp 1_

o,,(/;

À),,].

Here

co,(/;A),a

is the n th

rnodulus

of continuity

defincd bv

i

,

Following KARLTN.

þ,- p.

S2Bl

the

generalized

di'ided

differenc

e of f at x,,

. .

.,

x¡.1,

is

defined

by

5 BEST APPROXIMATION

2. An

inverse theorem

uoØi\

91

uu-t

G)

f(r¡\

(14) .f

(xt,

. .

.,

x¿+x)

:

uo(x¡+n) ... un_t (x¿+u\Í(*¡+")

uo@¡) ttnþ¡)

uo@¡+À

..,

uu?¡1r) where u,,(x)

:

zao@)

[;

wr(4,,)

.,. !2,-,

u,,(2,,)d,8,,

...

dE,

The generalized divided difference has the property

(15) Lf : o+f(r¡,

. .

.,

xi+^)

:0.

fn

generalization

of

(13) one defines (see [6])

with w,,(x):

1

" lF,q{ f. l8'}f¡x'¡1t¡tø' 1(1<or

0 < Ul l < t. ,,x +ilh e (o,b)

I

(16) ar

U.,

f)p :

sqp

ess.

sup l\'ìf(x)l,

0< Jirf <1 x, x t, tùe la, bf

Here

L'i,f

(x) is the n

Lh (foru,ard) difference of

f (x) with

increment /¿

" .sllp

ess..snp |

8;/(z)1, þ:

æ

u <1,/rl <l .t,t¡nhe(a,þ) r,r'ith

(17)

ài,f @)

:

h"

f

(x, t(

+ h, ..., x f

nto).

Since/(1,, ..., x¡r,) is.liue-ar.inl, thc

generalized. mod.ulus

of continuitv

r"or(l;

f)¡ is

srrblinear irr

/,

i.c.,-

(lB)

a,, (t ,

f, I "f)p (

o¿ (l ;.fr)p

I o,r(t;

"fr)p.

For the

follou'ing

the

relation

(re) sif";:-\

B(r, h)ã

f ,, oi-'J@

t

| rh)ß,

(x, h)

together u'ith

(see

nrcHanns_lnvonn

16])

(20) llB,(*,t)lB(x,l)ll,<C? (0<,{n;0<l<t), (21)

llt3o@,

t)lB(x, t)ll.

>

CB

(0

< /<

t),

is

essential.

A

conseqrlence

of (lg),

(20) is

(22)

otr(t ;

f)o <

Cnll.fli¡.

SU 0< l¿

p

¡<r l^iil@)tþ

,1(2<.o

'fi:Ø

(13) a^(f ;t)e:

[a, ¿¡ ]

(4)

92 KARL SCHERER

'¿,N

I

*i, ì¡-rh

o

I

and

BEST APPROXIMATÎON

with the

help

of the

properties (1s),

(lB) and (22)

the foilowing converse theorem can be proved.

rHnonn¡r 2. Let

Eftra(.f ;

þ)

d,enote the best øþþroxi uhere A*_

is the

equ,idistønt

þørtition of

Lo,

bl

into

(U

- o)l\._ Then

oitc,

has-for'.f 7

Lo@,"t1,

\'< e .**

þ : æ, N

being odd. and."

N )

S,

(23) ., (N-'

; "f)þ

<

Cn[Etr,ot (,f ;

p) + El!,]\(f

; þ)1.

Proof. Since

it i ¡at

one of

the

corresponding theo_

rem in

, [7^]

for polyn a brief ,k"¿h ir"ei""".

r,et s

denote

an gp-r"-oL;i;" "isiø,-A",

0) to

f

e

=

Lp(o,

b). Bv (18) i<

r

rotlt; "f)p

< C,rlll -

Sll¡

f

ar, (ú; S)e.

By

(.15) and Qq) one

may

estimate

further

(0

<

I

( Crrry-r with

suitable small constant Crr,

the

points

r¡,"

being

thJ kn;is-riäil

¡

lN-l or¿(l

i

S)p

* ,tåt,l

Ð

< c,,{rr - sl +;:p=,

{

But

the last term can be estimated

fV n(i,i\

(.f ;þ)

io

exactly the same manner as

in [7]

using

property

(15).

3.

Connections between

moduli of

continuity The

following

theorem

is

proved:

THE9REM

3.

Tkere

exist

constøncs

Crt,

C,.! ønd.

ø ò,

0

< g< l,

suclt,

thatfor euervf = L¡(o,b)

ønd' 0

<r<

s

ä,trii"ià-ïnl¿iitqiør,ities*

(24) atþ;.fp) 4 crnlt"

llflb

+ a,

(t;

"f)pl,

(25) a,lt;.f)p <

Crult"llfllp

+ 6Llt;f)þ1.

. Pr3of.,lB1' relation (19) and the

estimates

(20), (21) there

folrorvs irnmediately

(26)

^, (t;.f)p " ,,f," lfll¡ + .,(r;.f)p* b,

t, <ù,_, 1t,

t)r]

t rn genetal the ter¡n

.!"llfllp cannot be dropped si¡ce ilris s,ould imply that the nul- space of Ð'is coutainea in thai"ãf Z,, or ãon".i".ry,

(27) a,

(t;

Í)¡ ( C;,

max

(t, ,)þ" IÍlb + ar

(t;

f)e i'f u^,,_,p, ¡¡nf.

rt

remains

to

estimate

the

sum _in_.(26)

or

(27)

in a

suitabre manner. By Marchaud's

inequality

(see

e.g. i3l)'

oáe

has

'

n-l â 1 -- I

(28) 'f ur^-,

(t ;

.f)p( c,, 2 *[WW -f iu--*,-,

øn (u,

f)o d"l*

t

" c,,[r" Vll¡ -f rlu-*^,,'(u;f)ed.uf.

splitting up the

integration

from"r to g

and

from

g

to l, and

observing

tt

"øn(tt ; ,f)¡"

<

2" t2'"un (tr;

,f)p

'(O

< tr(

/.

( l),

one obtains

(29)

r"

rôr

f u-"a,(u;f)p du- l"Il u-,o-n(uifled.u*\-u-,-,.^(Í;u)odu]<

, '

{

2"j fco,(r ;

¡¡, (;

'

- ,,

a-

t,

llfllei

n(s-, I

,,0

* (

2'[co,

(t;f)p8 | nt,B-"llfllel.

Now

one takes

I :?..".-'.LCrÇ,t ma* (-1.,cr)l-'. Then

(26) and the esti-

mates (28), (29).estabtish tLe

iirit ir,"qoùitv

'Q,+¡

"i tni

tìreorem. Further_

more,

inserting

(28), (29)

into

122)1viåds

*itì, lîir cttã""'or ¡

a,i(t;

f)p

" i.,(,

;

Í)p -f C,,lt,

llfllþ

+

az

(t;.f)¡û,

whence

(25)

immediately follows,

4.

Characterizationlof generalized

Lipschitz

spaces

The

generalized-r'ipschitz spaces

in

question

are

defined

by

93

rlþ

l}s1, ¡x¡¡t

¿,

N-I ti,N rlþ

D

t:l t¡,¡¡-th

!lsiftu)¡dx

Lip

(<Þ, q, n I

þ) : e

Le@,b)

fO(r)-ro,, (t;

f)¡l ült|'to

,

.?Tå ot,l-,^, \t;.f)p,

{J l(l<oo

Ç:

æ

(5)

94 KARL SCHEREIT

I I

BEST ÀPPROXIMATION

95

for I

<1ó

ç.co

(in ga.se _¿

:

co one assumes

-f = Cla, bl

instead of

L*

@,b)),

where rÞ(i).is a positive non-decreasing function on (0,1] r,vith lim¿*o,O(l) 1-

: 0.

Combining

the

previous results one arrives

at the

follor,ving châiac- terizaLion theorem

for

these

fipschitz

spaces

(in

case O

(l) : t""they

are

the familiar

Besov spaces

on the interval la, bl) in terms of the

best

approximatiç1

[ft,'n)

(f

', 1>) :

tr{EoREM

4.

Let

Q

be as øboae alxd,

satisfyj*,r,-' t,-t dt { co.

Tken

u'n'd'er tlre qboae notøt'ions thefollowing a.sscrtion,

)r,

equiaalentfor r

{

q

(

oo:

1)

.f = I,ip

(O, q,

n;

þ),

I

li¡ {liop¡-lo¿ (r;f)t)o

d.t¡t¡,ra

ç.

ee,

REFERENCES

!l

B u

tz,er

p.

Ne¡v

of Oþcrøtors and A.þþroxitttation, Springer 12) J e r o m e, J.

-J. A

on.

, ui_ts+.

.by -c_crtain gctrcralizetl sþli+te f.unct.ions.

[3'] Joo""ä#à,,289_g0a. ttle moduti of s*toothness. r\{at. Vesnik g (pzr)

[a] K a r I i n, S., Totøt Positia_i.ty, yoi- I, Stanforcl Univ. press, Sta¡ford 1968.

[5] DeVore, tion. In ,,Splile Fulctio¡s Sy¡rposium, scr, ßasel R., Ricrr.ar<1 1973.Bclmontol í, r., 1gj2 soí"í"j¿oi'""¿,inuer.se aucl (a. Meiir: Aoproxi¡r.ti9" iir.ãiy,,l _ ¡. Sharnrá. áár.j rheoreuts for isNlr proceedirrgs sþtine 21, aþþroxittta-Birt¡hüu-of the

[6] DeVore, R., Richards, (to appear). I¡., The rtegree of aþþroxim,atio, by Chebysheu,ian s.fùiøes

[7] sc1rerer, K, sþtines, clt'araaterizali'on ,to appear oJ generali.zed, Liþsch.itz classes lty best øþþroxirnatiott taith

in srÀu J. Numei. Anal. li iínil.' '

Lehysttthl A J.ür Møthemat.íh, Technische Hoahscltule Aacheti Received 2. IL tg?4.

ttt)

{Ë [o(N-r¡-r¿ *,ù (f

;O¡1,

u,,-']"0. -

f n cøse g

:

æ end tn

:

0(O(l)) tlce foltowing øre equiualettt :

i)'f = r,ip (o, æ,n,þ), ii)'

<o. (t;

"f)r:

0(O(l)),

iii)'

Eø,.r

(f

;

þ) :0(1¡(N-1)).

If 7im¡*¡1inf O(Z¡-t¿':

ær. qsse.t.,tion

i)'

,imþlies that

f is a

þolynom,iøl of tlegree

n - l,

wheleqs asserrtion

ä)' or äi)'

irnþty that

îJ:0,- I <

y'

< *.'

Note that conditionf *U)-tr-t

d.t

< æ implies a smalle¡

decrease oT <Þ(l) 1.or

t *0 f

than

åndition /' :

0(o(l)), since from the boundedness

of ll-". integral it

follows_

that t,:

O(O(t)). On

the other

han<1, @(t)-1t

: : 0(l)

means

a

smaller decrease

than lirf,*¡* inf

O(l)-ttn

: Ø nìúi"t i,

g a pol¡.nomial oi

degree

n-l

or assertion

i)' - iii)'

vanish identicalll- g theorerns yield the follorving chairr

.¿(N-' ;,/)¡ <

c,o¡.Ðç,',t

(f

;

Ð + E\ï,it

;

p)l

<

(

Czo [N-',||,/llp J-

.,,(N-. ;,f)¡]

<

( C,'[]/-'llflb + ar(N-' f)pl,

from rvhich

the

equivalences stated above immediately follow. The satura-

tion

case is handled by the same arguments as

ir

nrinenns_DEvoRE t6].

Referințe

DOCUMENTE SIMILARE

We also compute the rates of convergence of these approximation operators by means of the first and second order modulus of continuity and the elements of the Lipschitz

The papers [32, 33, 39] are concerned with best approximation in spaces of semi- Lipschitz functions defined on asymmetric metric spaces (called quasi-metric spaces) in connection

Bounded linear functionals on a space with asymmetric norm As in the case of normed spaces, the cone of bounded linear functional on a space with asymmetric seminorm will play a

Sendov and Popov obtained in [8] that, roughly speaking, if a sequence of linear positive operators that preserve con- vexity of higher orders has the property of the

In the present note we study the degree of simultaneous approxi- mation by certain Birkhoff spline interpolation operators.. Special emphasis is on estimates in terms of higher

Lipschitz duals, meaning spaces of Lipschitz functions on a metric linear space, were used to study best approximation problems in such spaces (see [10]).. A good account on

The aim of this note is to prove an extension theorem for semi- Lipschitz real functions defined on quasi-metric spaces, similar to McShane ex- tension theorem for real-valued

Timan, Srrengthening of Jacl&lt;son's theorem on best approximation of continuous funclions given on a fnite interval of the real a-xrs (in Russian), Dokl.