• Nu S-Au Găsit Rezultate

View of Quasiconformality and boundary correspondence

N/A
N/A
Protected

Academic year: 2022

Share "View of Quasiconformality and boundary correspondence"

Copied!
6
0
0

Text complet

(1)

T,ÍATIIEMATICA

_

REVUE D,ANALYSE NUMÉ'RIQUE ET DE THÉORIE DE L,APPROXIMATION

I'ANALYSE

NUN,IÉRIQUA

ET LA TI{ÉORIE DE

L'APPROXIMATION Tome

5,

No

2,

1976,

pp.

117

-12ß

SUASICONFORMAI,ITY AND BOUNDARV

CORRESPONDENCE

by

P. CARAMA.N (Iaçt)

Introduction

Let D be a

domain

in the

Buclidean Ø-space

R, B the unit

bal1,

: (qc), E the set of poirr.ts oL ôD inaccc- E* the corresponding boundary poinls

tt:at n :3, .f is

differentiable and

that the

(n

- l) -

dimensional Hausdorff measure

Hn

1

(E*) :

0.

T

esult was proved

by n stoRvrcx

l7l lor n :3,

.f

. C', ted and mn <-. 4"

gives alèo

(ìn

the

same paper)

an

ng

to F'

Gehring

only

under the

hypotheses

that n :3

We shall

begin

by giving a proof of this

theorern

lor f

:

?

= B

q',

rvithout any othõr

additional-

restrictive

condition.

Then, we shall

pfov^e

theE'kis

of-conformal capacity and even of ø-capacity zero lot ever-y ¿

)0.

Gehring's conjecture is thât

E*

is evèn

of

logarithmic capacity zerc : C ¡(E*) .='

: 0

and. M. r{EADE

[6]

assertion

that E* is of

nervtonian capacily zero:

cl(E*) :0,

Now

we sha1l introduce

a

ferv concepts :

Let I

be an arc

family

and.

F(Il)

be

a farnily of

admissible functions p(ø) satisfying

the

following properties:

lo

p(x)

ì 0 in

Rn,

2o

p(*) is Borel

ureasurable

in

R",

30 J' [tasZ 1 for

every

Tel,

Y

(2)

118

P"d",

R1'

rvhere dc

is the

rrolume element

(1)

A

qc accordipg

to väisälä's

geometric

defi'itiou is

characterized by

i4(r)

I(

<¡1fl'*) <Kx,r |\

s'hich is

supposed

A function

¿¿

to

hold for

every

I

contained

in D,

rvhere

l* (f)

l'ines)

in

a domain

D if for

each

interval I : {x; a-i<x¿<þ'(i l,

3 QUASICONFORMALITY 119

then C"(E)

:

finf/"(¡r)]-1,

where

the infinum is taken

over

all

positive meastlfes ¡.r.

rvith total

mass

1 and the support of ¡r contained

in.Efis

cal1ed.

by war,r,rN f9]

æ-cøþacity.

When

o,

:

d,-

E is

supposed

to

have

the

diameter less

than 1. For

any

athittarv

Borel set E,-c o(E)

: 0 irr"3ï!uu,.î

f ,lo:.0,tî,jl"åitBitir"¿"ñ

to

capacity

of

,E* (i.e.

the

n-capactty)

is city of

E^'

is

zero

for evely

c¿

)

0'

|

'

H"-rE* :0'

o s

i t i

o

n

1.

If lo'is

the fømi@ of t.tnrcctifiøble ørcs

of

R", 'tlt'en

(J.

vfisÄLÄ

[B]).

TI{EOREM 1.

f1"-18* :

0.

But,

since

f is K -

qc,

it

satisfies

M(l*) ' Ño*, :0. let y¿- be a radial

segment

with an endpoint [*

e

S'

Then

clearly,

xn'(€*) S

yv P, C.A.RAMAN

1

Then

the

modulus M

(l) of I is

given as

a[(l): ia¡

pe.F(t)

D

* Rl is

said

to be

ACL ( absolutely contiu,u,ous

f

on (i.e.

1C

(alurost

n)j, I C C

D

D),uisA

C (absolu sense) on a.e. every) line

The

tuo

closed,

where Co is

(2)

cap,,E:cap E:inf IV

segment d,isjoint

and

C

. is

compact, sets Co,

is

defined

CLC

as

D relative to

D,

tely

continuous) (in the

parallel

to the

coordinaordinary

te

axes

M(to): Pro

0p

cap¡(D, C6, Cr)

: i¡f

J l\/ultd'c,

I âtt

wÌ1ere

\/,,:

l*, . ,#)is the ,r"u,:;";T") ^oathe infimu'r is take'

over

all

ø, rvhich are continuous or1

Dl)-CoU

C.,

ACL

on

D

__

(CoU

Cr) an_d assume

thè

boundary values

0 o'Zo unã r;" C;So"n

rurr"tions are

called

admissible

fol

capo

V),

C0, Ct).

'lhe

caþacity o.f

ø

bound,ed sct

E C

IL,,

is

definecl

to

be

lvhere

the infintun is taken over all functions

zr,

which are co¡tinuotr

and

ACL iu_R",

have

a co'rpact

support containãd

in a fixed ball

an

afe:1on.Ð.

The u-þotentiø\,0S øS n of a neasure

¡,r.

is

denotecJ.

by

uu;, wher.e

(f

for every

p* e

F(l*)

and, integrating over S, on account

of

tr'ubini's theo-

rem, we

obtain

Hn-l(E*)< H"-,(Ei): I xo.{A*)rl"=

[1og

;)-' f

e*"d,",

where do

is

the superficial

"r"-"to, of

S.

Finally,

taking

ttt" inti-rr- o,,"' all'

Oi' e

F(l*),

yields

Hn-r(E*)= (.* ï)-' *1r.) :0,

i

if 0<a<n,

)"s

log

* d,s

1r " d,r, p p

1

n

llr

f

*ny*n- d,r*

u!1x¡:

drt(Y)

lx - !1"

and

Rn

u[(x): Iton-'

eo \þJ

- )*r"ts l,

_ nt dt-tb,),

which is

called also

the

logørithmic þotentiø|.

rf

1"(¡-r,) d.enotes the encrgy

integral of. ¡t

1*(p)

: I

uid,s(x),

Rn

2, Ex is

closed.

F'or any two points

%,y e

D, we shall

define

the relative

distance dr(x,

y) to

6e

the

gratest lo¡n'er bound.

of the

lengtþ

of all

arcs

joining

ø

tõ'y äa

lying

in DItt

is clear

that

do@,

y)

is a

metric

an;d Lhat doØ,

Y)¿

as desired.

(3)

120 P, C¡,RAMAN QUASICONFORMALITY

t2l

4 5

Z lx - yl rvith

cqua.lity tf- ry,

! lie on

some convex subdomain of

D.

For

points

x e

D,

E e'âD,

*e

defín-e

¿r(*, z) t" ¡1irråì"rì-îrî,

"t

rirn do(x, x,,,)

Arr arc

\ c D rvith c'dpoints

E

e

0D is calred an end,cut

of D

from (.

the

sets

Er, E, C D is thc

iufirnurrr ning .E',

to E, in

D.

sanre

endpoint

E

e ôD

ate called Ua

ol

1, dok,,

O Ue,y, O

Ue)

: Pr opositiorr ? L-:t/:_D=; B

bc

a

l{_qc uløþþing

(l< K < *), thut, d(Ei_, D;) =0 .irtþtic.i

arla:,,

"D",i'"

0^,r;r;:,;i{tEî, Di C B

anrt

En: Í-,(Ei)(h _ 1,2,). i '\-

'L!

Ngrv

*'c shall i'troduce

.(accorcrirrg

to zo*r0

Lr l

]) thc conccpt

or

boundary

clc'rents

(a

gcnerali)utior,-ài'1,r;;"'?;,ä;i. t' ^',

,{

sequence

of domains {(J,,},

(J,uC

D(nt,:7,2,...) is

saicl

to

bc regular iL

a)

ú,n,_1C (i,,,(tn.

: 1,2,

. . .),

(@ \

o)t,f, ú,,,)c

an,

, c) 6,,:= 0(J,,fl D

(the r.elative bounclary

of

(J,,,

in D) js a co¡lectcd

set,

d) d'oþ*,

6,,,+r)

)

o,

. e)

there is at rnost an accessible boundary point of D,

',hich

is accessibre boundarv

poi't for

each

of the

dornain"

"i ih;-;"qÃ"" {u,:}- --*"' , ïyo

seqrle_nc(,s

of d.omairs.!Ur,j,{(J,,,,}

are

cailåa

aquiaale-nt

if

ever1.

term

of

each of thern

contai's alithó'termá

of

the

othcr óne b"gioiug

b;ä

sufficienty great

index.

A

bound'øry element

of a clomai'D is

the

pair (F, {u,,})

consisting of

a regula'

seqrlcncc

{U,,,}

and

a cortinuum F : fi ú,,,. Two

,boundary

elements (þ-; {(1,,,}),

(F', tul,})

are consiclered as

¡aririilraiff

the two regular

sequences

{u,,}

and

{uíl defining them

are equivalent.

r' this

way-any

of the

equivalent sequences determine uniquery

a

boundary element.

Proposition 3.

Foreaerit

K -

Sctttnþþirr'gf

tP¿,8;itisþossibla

to estøbtisË an one-to-one corresponíence betiseen the boir'nd'ary-!2i.nt1- (F, {U,,})

"if-rí-i"iin,

ponrts'o/S, so that,,to

eac.lt, þ::yt

(F'"19,,\),there corrcs-

lrla-i'åi i [t" po;å

dercrm'inrtd bv

the {ui,,) : Í(u*\)'

(For the

proof, see lemma

3 in aper

[11])'

Let

us consider the class {4,

y}

of D-equivalent endcuts y

from

a boun-

dary point \e

ôD.

On

the

other hand, given

a

clas

a the

corresp

c O B(t,

r,u)

I

sequence is

s t is

easy to

let

r { !r,nunð.yr C y, lrCy'

be

st,chthat the

diameters d("¡r)' d'(yl)S

r

arrd

f is the

common endpoint

of

y1,

^¡í.

Since'¡',

Y-ar¡

D-eqttivalent aud

re is

an

arc

a

L D Þtntng tnelll

allo

e Point

l*

e S, as desired'

L

e m rn

a l. E* is

cl'osed'.

I'et

r*:u{s-

tp xo, m)

In

ord.er

to prove that E* is

closed.,

it

is _enough

to

show lJnaL

E* : F*.

We shall estäblish

first that E* C F*.

Indeed, suppose 6* e S, but E'r'eF*,

(4)

122 P, CARAMÄN

then there is an

in

teger

tn,n

such that (*

e

q*eS-

fi0,

To (4)

complete

tire

proof

of

(3),

a,t(t)

\'\¡e must

s M(r).

shor'v

that

Norv,

the

'Lact

that

Co and.

C,

are

disjoint

irnplies

that M(l) <

oo'

Iìix o: t >landchoosepe F(l) so that pisl-"-integrabie' Bythepre-

1-e

cedirrg proposition, \4¡e call choose

I >

0 sg t}Iat,ap e

r[Il(l)]. we

may-assu-

*À, f'ot'"oä.,"ni"uó" of

notations,

that D is the half space r" > 0.

Set

plx) :

ap@

+

lø,,) (where e,,

is

the -versor

on the axis o*2, let 1t:.1 liìà'f"t y'È" i¡""átò y, tra'slated through the

'ector

lø,,. Then

y

e

f(l)

aud r,ve have

QUA SI CONFORMALITY t23

6

s- xo,

r11

],

hence

f)

S;

i.e. 4*

betongs to

nP

the b of

endpoin

t at {*,

tþ@

mo)

o, nt.o)l and

with

an

and u'ill

halre an endpoi

fiable

nt(eôI)

arcs from

l)

accessible

b)'

recti-

dS

x

l

p

\ or(*

)dt 1

-[

Ilence

p. e

F(l),

rifll)

<

t

?id, ct¡7

I

p"d' '

Rtr

3.

Cap

E* :

0"

Propositio.n 4.^Lct CoCÐ,,Cr_CD

be

tuo

non-ernþly d.isioirtt closcd' sets,t the

family of

arcs

*irùn-¡Llttbf,"la"òr";;

o," o

rr(r),

p e 2,,.

Then, giaen

e>

0, there

is øt(e)>0

such

int ,1_.f

¡¡12¡

I for t <t(u),

'y'i;,'oÏI,oè,tl'

ørcs

ioíning co(t): {*t

a@,

c0)s 4 to c,(t) -.

(For the p r

1>aper f2 |

r,emma tnfuTr¡iì

sþace D, C, ø

of

Co

in

âD.

the

fantily

of

(3) a,r(t):i*F,).

th"tAtguiog

as rì.

(ìTisnrxc

and. ¡r. r¡ÄrsÄr,Ä

in le[rma

3.8

of

[S], r,ve obtaiu

M(r) s

J'

nt¡r,¡,

Ncxt, lct Ir

denotc

thc

'arnily of

arcs

,"!i:l joi'

Co and C,

in Ð.

Then, by

:l;"ìiä:" ar'ument

as

in

Gãrrrin;

;;d îàl;åh;; ;&;# [lot"a

abovc, rvc

)-

*F,) s M(t)'

and taking the irrfimum over all such p yields A,I(l)

= ø"M(l).

F^inally,

if

u'e 1et a

-,. I,

rve

obtaiir

(4) as desired.

iót o11ary.

l.'Suþþose

E C'S is ø

cl,osed. þroþer subset

of S

ttnd'

A:\x;r <lxl a+Ì,

where0

<r <L IÍI. isttoefamitv of

arcs ahich

ioin l|l 4 r

to

E in B

and,

l,

tke

famity

of ørcs uhiclt'

ioin CA

to

E¿n R,

"tlrcn,'fònnulø (3) stitl, kotds

for

the new rneaning of

I

and'

l''

I,et

xo e S

- E

and.

x' :

g(x) be an inversion

with

respecl

to l

sphere

with

the cénter of inversion

xo.I,ei

us denote

by B(r): {y; lll-1r}:-Co:

:9lB(r)1, Cr: q(E), l' :"ç(f) and l{ :.9(lJ1 Then, -q(S): fI is

a

ptai å

anii'C, - n

äà¿

*"

are

in

the hypothesis of the preceding 1emma, so

that

M(r'') : i *Fl).

But

iuequality (1) implies the invariance of the modulus rvith respect

to

the conformãl mappings,

allowing us to

conclud.e

that

M(t): I[(t'): I*["): i*('')

as desired.

P

r op ositi on 5. IÍl -9t',n,ttte'n ilI(l-)=Ð,

(1,,).(u.ËuGI,IIDD

r-31.)

'

"

'L.t M(E*)

be the mod.ulus of the

family

of arcs rvith an endpoint

in E*,

where

E* is

d.efined as above,

(5)

124 P. CARAMAN

is

tlte

føntit1

of arcs

aíth

an end.þoitr.t belonging to

tt,I(E*): n4(l*¡ :

s.

g OUASICoNFoRMALITY 1'25

on the

other hand,

let

p e

F(I])

and æ

an arbittaty

continuum of- x. TJren, there exists an arc

yei' such'that YC

ø, hence

peF(X),

so

that

Õ

I,emma 3. t¡i*

E*,

then

M(x)

< P"d",

I.et

{r,,,} be an incrcasing sequeuce of nur¡.be ts ï,,,

}0

such that 1im r,n

:

Rfr

-=

1, and

{li;}

be a scqrlcnce

of

arc I

'llien, from the

definitiorr

of E*,

we

\r, =.!?, ..-.) are not rcctifiaúle,

r

1, M(1,,,)

:0 (m:7,2,...) and'(l

I,et ñ;,

be the

family of

arcs rvhich

j

'lhen, the precedi'g corotary

allows

us to conclude that MFî,,) :o

(rn Next,

: 7,2, if li c s

. .

.),

I{ence,.taking

uld !-.í is tïe into r"ttlv

account- of propositio

n

S,

M(¿ i;l':

O.

,thä ;i*;}-^;ilh the e'dpoi'rs

belongiug

to E*

ancl

rvith

fl CS+'h,

tn"u

f

rvhence,

taking the infimum over {]

p

e{(?), -'ve obtain M(x)= M(I')' which, togethõr with (6), gives

(5), as desired'

'rHuoREM

2.

CaP

E* :0.

1f n.t j ís an

r^-neighbourhood

oI E*

(i.e.

the

set

of points rvithin

a distance

z'from E*),

then, clearlY

(7)

caP

ICE*(r), E*, R"l2

caP

E*

since the class of admissible functions

for

cap

lcE*(r),

E'k,

R"] is

containecl

in

^^

that of -ñ;"i;fãiï;:

cap

E*.

d.enote

the family of

arcs,

wliich join_E*

and

CE*(r)

in

Rl,

an¿

f*

of

th"

preceding lemma, then evid,ent t-;:

C l-x

and the preceding lemma implies

MICE*(r), E*,

R''f

: M(li

)

= U(f*) :

O

for all r > 0,

hence and

by (7), taking into

accorrnt also

the

preceding corollary,

we

obtain

cap

E* l cap |CE*(r), E.*,

R',1

: M|CE*(ï), E'.,

11,,]

s jlf(Ì.''.) :0,

as desired..

I{.

wATrr,rN [9] gives the following definition of the coilf<¡rmal capacity :

-,-,nàï^f'6.

a Ëoînded set

in R",

cap

E

is.d'efined

bv

(2), where thc

infiáim is taken

over

ail

lunctíons 1,0

e

CL, which have compact support

^¡ãr"rgi"g

to a

certain

fixed

sphere B(Ro) which

is

independent

of E

ancl

ul, "" Þ -eigoiog

7."

as

in

F. GErrRrr\G

ls

p1pcr.

([4],.lemma,lì, it can

casily bc

sno*. ih"t"the infimurn

appearitrg

in trte-a"finitiou

(2)

of the

conformal

ããp."rty

"f " ¡oo"ã"à

set L-^is nolincreased

if it is

taken

over all u

e Cl

in

R".

-corollary.

cap Et,:0,

ukere tke conformø|, caþøcity

is

ta'hen in' Wall,in's sense,

i.i.

ui'th,

ul" Þ I

(not ülB

,- l)',

reõding theoren,

since the conformal

n the introduction is not

lessthanthe

ty.

set

in R"

uíth' caP

F :0

(tloe con'for-

fl(ffty_

Oionctusict'tts

ure true:

>0.

(f9'j,

theorem B).

ò- càPøcitY Co(En)

:0. If

n

>

2,

then

Cn(E*):0lor

eaerY

a>0.

!.

M(l$ ) : i¡¡

p

p"d,'c

: inf

p

d't

and since

lö- : U ñ;,

prulrositions 5 vields

,L 0

p s

M(rö) _ M(l rj,) : \, uçr¡;,¡ :

o.

clearly, F*

c fs u rô',

so

that, from

above, and

by

propositiorr 5, rve con- clude

that

M(ix¡s M(tg ) + ttr(ri) :

o,

as desired,

ï t

o-p 9.s.i

t i

o

r17.^If 1is

the set of

ail

continuø itø

Rn

that interesccr

luo

closerl, d'isloittt srls^c.,"_ci, zaloere co"

co"tol", iiii""rå'*iìrrrrnt of a

bøil, thcn

M(y):

õap(Co, Cr,"'R"i'.

(For the proof,

sce

w.

zrpr{ÐR

[10],

theorern 3.8.)

Corollary. M(Co, Ct,

R,,)

:

cap (Co,

Cr, R).

It is

enough

to

observe

that

(5) M(co, cr,

R,')

:

¡,1(x).

rndeed,

iÎ l'is

the

family of

arcs wrrich joirr-co and.

c, andcri'R,, the',

clearly, I C X, hence,

proposition -S "yields

(6) M(cr, cr,

R")

: M(t) s

M(x).

(6)

t26 Þ. canaMnñ

10 I\IA1'FIEMATICA

_

RPVUÍT DiANALYSE NUMÉRIQUÉ

ET DE THEORIE Dtr L'APPROXIMATION

r,'aNALySENUMÉRIQ*'ät-ir:i#ä:litt"ljrlu^pp*oxlMArloN

RE¡'ERENCES

[1 j C a 1' a m R. R. a u, S. S. Române p Rornâne,. e t r a, n-d,inrcnsional quøsiconfortnøl 1074.Bucure¡ti t9ôe; ,,ÀLacus È;"*",,, xËít (ecf) rtaþþings. Þdit. an¿ Edit. Acad.¡\cad.

'

ri;:;i;:i",y;;h;,#'ï"#nlÍ'il åli:lr,

_

uas,iconformal møþþi,ngs in sþace. Trans. Ame¡, cient of quøsiconformatity. Acta Math. ll4, I maþþings in thyee sþøce. (pretintinary report).

( I e57).

rresþotr.dence

_of . a q-uasi,aottforntal ntaþþittg in Army. 1.he Univ. of Wjsconsin. uni,,IeSfrrii_

1e63).

n.taþþings

,in

sþace. Ãnn, Acad. gci. ["orr.

ses

of

d,ifferenti.able Junctions. Arkiv för Math.

nd p_caþaci.ty. Ilichigan t,Iath. J. lG, 43_S1

[ll]

3 o p u AxaÃ

u, B. Havx

(1962).oôuo¿o rcìacca omoôpameuutí s npocmpaHcnee, ficxa.

[12] "On

¿lrcttettmo, nocpeôcmaotrt ceqcttuti.l{otr,r. Axa^ Hayx

CCCP

).

ANTIPROXIMINAL SËTS IN BANACH SPACES OF

CONTINUOUS FUNCTIONS

by

s. coBzas

(Cluj-Napoca)

Receiued l.VII.1974.

I.et x

be a normed linear space,

LI

attof'.-void. subset

of x and

x e

x.

We

use

the following

notations:

rt(x,

M) : inf

{l

lx - yll: )'

e

M} -

the distance rro'rn x

to

IVI ;

P*(*) : þ

e

M:||x - yll:

d'(x,

I,l)} - the

metric

plojectiou;

E(IVI)

: {x

e

X: P*(x) A

Ø}_

'r'lre set ¡Z is òatled þroxim.inal í1 E(

: M

(see

tsl) -

Follor,ving v.

of

all

normed linear spaces r,vhich set, and

by N,

the class

of all

norme

oroximinal

bounded closed convex

Lr,

.u,. ot,rJg

16], a

Banach spacc b

is rrou-reflexive.'I'he

chatacterizati

is

rnore complicated. The

first

exam

given by

M. EDDLSTETN

and ¡.

lho."u that

the space c belongs al

tion; all

undefined terms

are

as

ces

X, Y

are isomorþhic (notation phic bijection g :

X -' Y.

'l'he map

^If

further, llqiø)ll : lløll for

all

ornorþkisnl, and we say

tlral

the spaces ù'c (notatíon'

X:Y)'

I,et

S be a compact Hausdorff spate and C(S) be the.!aga-cþ space of

all real -

valued, cåntinuous functidns defined òri S.

en

id,eøl

I

is a linear

;;br;;"" or õijf't""tt tt'"t

xy e

l r.or all x

e

I

a''ð'

v

e

c(s)' rf S' is

a

Referințe

DOCUMENTE SIMILARE

By contrast to Yeats’ central position at the time, as acknowledged agent of cultural power, Joyce’s resistance was catalyzed by the energy of self-exiling –a third space

The model showed overall significance level better than 99%, with the F = 23.2285 .Value of chance is less than 0.01, which shows there is significant relationship between LogP,

The observation that in this language the special objects are only possible with accusative morphology on the clitic double, as well as the fact that they tend to behave like

Traditionally, research into systems composed of multiple agents was carried out under the banner of Distributed Artificial Intelligence ( DAI ), and has historically been divided

The present paper presents a case study. Starting with the homonymy of the word tril at two different levels – common and medical language – the study ultimately aims at

In 5 of the answers, the subject occupies the initial position of the main clause (Victor s-a apucat să cânte/de cântat la trombon), but 2 of the answers contain only

 History: 76 years-old-male, no relevant medical history, presented with right upper abdominal pain, heart burn and bloating.  Laboratory findings revealed normal blood tests

Notulae Scientia Biologicae is a quarterly peer-reviewed journal aimed at disseminating significant research and original papers, critical reviews and short reviews on life