• Nu S-Au Găsit Rezultate

View of Iterative systems, a topological and categorial approach

N/A
N/A
Protected

Academic year: 2022

Share "View of Iterative systems, a topological and categorial approach"

Copied!
7
0
0

Text complet

(1)

TIEVIJB:

I}'ANAI,YSÐ

NUBTÉTB-TOUE

ET I}E LA

THÉORIE

nÏì L'IïPPROXIil{/ïTION,

Tomc

2,

1973,

pp'

37-zrB

ITERATIVE SVSTEMS,

ATOI'OLOGICALANDCATEGORIAI,APPROACH

by

i\{. JA],OI]trANU (c1uj)

Introduction

11.

1. T{clations

I,etAbeasetandletRarrd.Pbetwobinaryrelationsin'A,i'e.R, p C-Ã

x-

Ã. The following

notations

will be

used:

RP :

{(x,

Y):12 e A((x,

z)

e R

and (2, Y)

e

P)

R + P : {(x,Y)

:

either

(*, Y)

e R or

(x, Y)

e P}

-it-1 : {(y, x):

(x,

y) e

R}

Ro : J -: {(*, *)'. x

e,

A}

R'' : llp"-I for

an5t

integer n

2-

|

(2)

3B M, JALOBEANU 2

R+ : >

{Ro :

i > 1}

(p1us closure

of

R)

l?* : )

{Rd I

i > 0}

(star closure

of

1l)

1t^ : R + I :

{(x,

y): (x,y)e R or x : !}

R" :R-I:{(x,y):(x,y) €R andxty}

R(*) : {y:

(*,

y) e R}

(the

fibre of R at

x)

R(Y) : U{n(ø) :xeY} for any Y CA

Dom

R :

{x,:

R(*) +

Ø}

_E:_R*ll(Rr,¡-r

Rv

: Rn (y x Y)

(the

restriction of R to Y CA)

RCP i"fÍ((x,y) cRimplies (*,y)ePfor

any

x,yaA).

The following

results are well-kuown:

_ l.rgpgsition

1.1.

R" is

the sm,øllest rcflexiue rcl,at'iotc corøtøining

R . R+ is

the snrallest trans'itiue rel,øt'ion contøining

R

øncl R* is tl'te smøl,l,elt reflexiae and, trans,itiae rel,øtion contø,iníng

R,

Moreoaer :

(R+)":(R^)*-R*, (R")'*:11":(Ã")'r',

(R'F)"

:

R+,

(R*)R: R(R'.) :

R-F,

E 'is øn

eqw,iualence

and the

reløtion ,iniluced

bu

Rr. ,it,t, the qwotient set

AIE

,is øn bycler

(i.e. (AIE, R*)

øs

o '

set).

Ð e f

i niti

o

n

7.1. Tke

þøir (A, R)

,itercttiae s)tstetn,

A

Y

C aill A

be th,e callecl set tlte

t(Y)

set

:

of

Y

støtes

-

Dom ønd

Rï R - th

u,íl,l be catled tl,¿e set

of

io¡t,. exí,t

f'or

states ø-sul¡setof

Y;

thg set i,(Y)

:Y -

Dom

(R")7t --

l,ht set of enírøttce stcttes

of Y.

Pørti- cul,ørly, the set

t(A)

u,ill, be call,ecl the set

of

terntinø|, stat;es artcl

i.(A) -

the

set of.

initial

støtes

of

the itercttive systent,

(A,

R).

A relatiorral machine [8] is àn iteral;ive

system (A,

R)

such

that

'í(A)

at(A):Ø. A Pawlak

machine

is an iterative syst"m'(,4, R)

such bhat

for

arLy

tí e A, R(x)

has a'b most one element

(Ã is a

single-r'alued relation).

P" Some topological aspects

ô irER^rIvE sYSTEMS 39

J

re

sþa'ce.

--

R"

(X)j

wilL

be

cølled' th'e

R 'in

the set A.

.A, c*(X):

U{cn(ø)

"KcX}.

Ë

ctosuie þreseruing. Eaery closcd

of at'L

cl,osetl

s¿ls "I

(A

, 'o)

¿s

ñ;tty

all closed sel's tttuy be tlefittes

1) A

set

of

ternr,inøl' støtes 'is cl'osed"

2) IÍ Z

'is

ø

cl'osed' set ønd'

R"(y) (Z

th'en

Z \)Y is

closed"

Proof.

Z C r(A) inLplics

R" (Z)

-- Ø and tlieri

'n!?)

.:

Z

','

also

o^rz'¿"i)'->öi U'RLZ çY).:3..U v U RJp.- z l)Y

sincc

Z is

a

"fàã"¿"."i and RY'(yí¿à-, rìí"i i. R(-yIc

z.

¿v.

As we1l,

it is

clear

th:t

the

conclitions 1)

*äì¡-à"iåri,,i"" in" tã-ittv {R*(y) :Y ç_A}.

poiLts

of

(r4, co).

J.et

unbc the topolop.ical-mod-i-licatiotr of t]rc closutc cn'

'i'c' tlre

clostire

defi'iá ifr un@¡:-n ti:

-X

C | :

cn(Y),

Y C Aj

Propo-Àiti orr'2.4. Tlrc

toþotogical ruorl'ifr'ca|iott' u'^

oI l'ltc

clostt're oþeralion cn

is

t,tte cLosure oþerøtion

gr;;r";;;' iî"t'i,í'iin' ¿oti'i"'o-f R

(briefly

l,et

cn: exp

,4

--> exp A

aty X (,4

(exp

A:{Y:Y It is clear thai

cr(X)

c"(X UY) :

CR(X)

U r^(v),

be the map

defined

b1'

cn(X)

: R"(X)

for

C

A}).

:XUR(X) :XUR"(X) and cn(Ø):Ø,

Consequently:

ø

I

h

(3)

M, J.ALOBEANU 5 lTERÀTIVE SYSTEMS 4I

40 4

sei

of

(tI

,

cn) containing

X, for

any

X Ç A,

therefore c¡¡*

is the

topologicai nrodification

of

cn and rvi11

be

denote<l bS, tt,n.

Proposition 2.5. For

euery su,bset

X of A

tl,tere

is

c¿ swbset

I

of

tl,te ut'it'iøI sta.tes suc/'t,

thøt X Çu,"Q).

Particwlørl,y,

i(A) is

dense encl

euery s,u,bset

Y of

nonintttal, støtes

is

(r. nowlxere ¿lense set

tn

(A, wn).

Proof.

I:i(A) n (R*)-l(X) and then

/?'F(,I)

) X. Particrlarly,A ç C Ìl'r(iØ)) that

is l(.ul)-dense set

in

(,4, wn).

IlY C A -

|,(A) then øn(Y) ¡-¡

I i(/1)

therefore un(A

-

o4(Y))

:

A.

3"

Sor¡e categorial aspects

Ilelinition 3.I Let (A, R)

at'r,d (Lì,

be |,zøo 'ilerøl,iue s3tsl¿11xs:

øri,clf

:A*>B ø

møþþing

of ilte

set

ii,iu.to

tlte

set B. f:(A,Il)->(B,P)

is

cølled. a morþl,t,isnc of iterøtiue qtstems (briefly is-morphism)

iff

(*,

y) e

intþh.es (.t'Q"),

JU))

€.,

P for

øny K,

y e

A.

It is

easy

to verify that the

composition

of

tr.r'o is-rnorphisms

is

al, is-nrotphism. Aiso

the

iclentical

nappiug e: (A, R) -, (A, Ã) is

an is-mor-

phisnr. Conseclu-entl¡' :

Propositioir

3.1

AU

iteratiae systents w'ith, rnorþloisms

of

,iteratiue

systems

forru ø

cøtegory denotecl by

Is.

Proposition 3.2.tÍ Í:(A,R)-->(B,P) is øn

is-rnorþh,isno lhen

f

:

(4,

cn) -+

(8, c)

ønd

f

: (A, un)

-, (Il, ur)

øre cont'ittwoots uøaþþings.

Proof. tr'or

ary

integer

.i> l, (*,y) ç. R'inplies the

existence

of

a,

sequence q.o,

at,

, . .,

a¡ tvittr cto: x, Øi: y

ancl (a,r, cto._r)

g 1l for

: :0,

1,

...,i - 1. 'lhen

Í(oo)

: f(*),

Í(o,o)

- "fb,) and

(J@o),

f(ø,,*,))

e:

P

f.or h,

-- 0,

1, .

..,i -

1, narnel¡'

(f(x),Í(y)) g'

Pt, llence (x,

y) G

R* iurplies

(Í(x),l(y)) € P'i' for

aTry x,

y

€:

A

ancl theref ore f(ut,n(XD

:/(n*(X)) C l'*(/(X)) : uoff$)), for an¡' X çA.

Besides, (*,

y)

e.

R^

is ecluivalerrt

s,itlr (r, y)

= R ar x: y, then (f(*),f(y))

e:

P or Í(x) :f(y),

nanely U(*),

JJ)) æ lrn,

îor..

any

)í,

y Ç 1i.

Consequently,

ÍGn6)):,f(Ã^(X)) C CIr"(j(X)): rr(f(X)), for any X CA,

Propositlon

3.3

lto

the category

Is

ø morþl,r,isru,

f

r,s cL lmor¿.onloy-

þl'tisut (epimorphisn) i.f øttcl only

if it is

øn injecl,,iue (surjective) nrøþþing;

"f ,t iln

isotnorþlûsrn.

,if ønd only .if

,it

is a

bijectiue is-morþhisno ønd.

(Í(r), fbù) e P

irnþlies (r,

y) e

R

for any

x,

y

€.

A,

i.e. ,iff

f

øncl

f-'

nyt

is-nt orþ h,isnr,s.

Proposition 3.4

Two'íterat'iue qtsterus areisom,orþltic

if

ønd only

iJ the

ittduced, closwye sþøces

cre

loorceon,torþl,tíc.

Proof. (lt, R)

and

(8, P)

are

isomolpliic iff

there

is

an isonrorpirìsm

Í:

(A,11)

+ (8, P). Theu f

and

f-1 arc

is-morphísms hence continuous nrappings, i.e.

/

is a horreomorphism. Conversely , let

f

be

a

homeornorphisru oI

: cuj6)) tlre

closure space (,4 and therefoLe cn),

/(R(X))

onto

the Cf6)

closure space

U P(/(X))

(,B,

for

cr,), then

any X f(r"(X)) çtI.

B:uI

-

(x,

y) e Ìt iruplies :,c R(x) ancl then lU) ef(x) U pU@)) tliat

is

(Í(x),Í(y)) G P

since

/ is bijective.

Consecluently,

/ is an

is-morp1'risn"

Similarly, ,f-' is an

is-rnorphism

and

then

f is an

isomorphism

in

the'

category Is,

If

Ens is

the

category of sets

let F

:

Is +

Ëns be the forgetful functor (i.e.

the

furrctor

wich

assigns

to

each

jterative

system

the

tLnderlying set

òf stut"s,

and

to

each is-morphisrn

the

underlying mapping

of the

undcr-

functor F: Is + Ens is

føithfot'I

oacljoint

functor "F.

Moreoaer,

for'

(A,

A x

A).

f :

S

if

ancl only

if ;ì(/) :

¡r(S)

U): A -- B). After that, for

any -8,

the

set

of

is-morphisms from

(8,Ø)

inLo

(A, R)

coincides

with the

set

of

mappings

of B into,4

since f

tøl e lor

any f :

B

--+

A,ther'"I'is

a coadjoint of

F' Sitrilarly,/(n)(

'È xE for

atry'

j: A

-u

B, anll

then the set of mappings of ,4

into B

is

tlre

same

that the

set

of

is-morphis ns

of

(,4, 1l)

iltoi (8, B x B),

colse-

quently

F"

is an adjoint of

F.

(/ãenotes the napping induced by

f

:

A

-n B

fronr tlre

sqtlare

of

¿L

itfto

square

of B, that is f((x, i,)) :

(f(x),

f(y)) lor ory of

iterøtiae systems

is

comþlete

colim'its.

îJ' J";îå'îiÏ3:"lt: "3i'äïåJ' li?

tive

systems. V/e define an iterative system

(A, Il)

with

A : IIA¡

(in Ëns) ancl

R : (\ Þi'(Ro),

ivhere þ0" A -u Áu.

1ár 'i

*.i iu th"

canonic proiection

(in Ens) and

-þ¿:

A x A -,

Ao x,.Ao is

,, In other

rvords, i|. {xo:

i e I}

and

tlre product of the fami111, {(Ao,

R):

is

an is-morphisrn

for

an1, 'i

e I

t]ne

tlrat

s,

:

þ¡s

Ior

ariy' ¿

€ /,

sjrlcc

Îamilly {A,:'i

e-=

/} (in Jins).

Bu

(so(r), s,(y))

e R then

(þos(x),

(s(ø), s(y))

e R.

Consecluently, s:

For two

is-morphisns

f, g: (A, R)

->

(8, P) u'e define an

iterative

systenr (I{, Q) with K :"{i: x

€:'

A', l@) : e@)} and

Q

: Ru. I,et h: (I{,

Q)

-, (A,

-R)

be the

inclusio

an is-norphjsm. lf j:

(C, S)

-' (/, h : Si thcn there is a

mappirrg

is thè-differcrcc kerncl

o{

/, g (il

(j(x),

j(y)) :

(kk(x), hh(5r)) ۓ

R

and

h,

is

an inclusion,

i.e.

/¿

is

an is-rnorp t'euce

kerncl

for

l, g in

Is.

Coproducts

ánð diff"t"nce cokerlels may be

construct

in the

sarne tt.onn"i, Consequently,

the

category

Is

has products, coproducts, difference.

(4)

.42 M. JALOBEANU 6 ? IrERATM SYSTEMS 43

Proposition 4.2.

T'lt'ere øre three functors:

"C:

Cl

-, Is, "U:

ToP -+

Is, "O:

Ord -> Is

swch thøt C

is

an ad'joint o.f

"C,

(J 'is a'n acljoi'nt of

"U

ønd

O

'is a'n ad'joint o.f

- "o,

Proof

.

We have

the

diagram:

kernels ancl difference cokernels and

then Is

has

any limits

and colimits.

Particular-1y, s¡e

can

construct

the

intersection

of a familly of

.iterative

systems

.trã th"

pullbacks, images and inverse images etc.

in

a similar way'

4.

Some

functorial

asPects

Let

Cl be

the

categor¡'

of

closure spaces and

Top - the

categorl' of

topological spaces

(witñ

côntin11ol1s maþpings).

It is

known

that

C1 ancl

Top

have

limits

and colimits,

The association of a closuïe space (,4, co)

to

an iterative system_

(A,

R) delines

a functor c: Is + cl; the

asèociaïion

of the topological

space (A,

rn) to the iterative

system

(A,,.!ì)

defines

a functor U:Tt ->Top' Ìn" píoporition

3.2 providês

that'C(f) a4 q(fl

are. morphisrns

in Cl

rcs- pectii,e

in Top, for ãiry

is-nrorphism

f

:

(A, Â) +

(.B, P).

The

association

of

a reflexirre and

transitive relation Rt' to a

relatiotl

R

defines a functor O of

the

categoly

Is into the

category

of

ordered sets (denoted

by Ord).

Incleed,

the proþosition

1.1 provid.es

that

(.418,Il'4)

ìs an

ordei"d.

sei for any iterative

sy_stem

(A, R).A1so,

frcim

the

proof of the proposition 3.2,

î(R*) C P*

alrd

¡1Rx-r) C P*-t

Tor any is-mo1plism

f

:

Ø, nl -'

Q3,

P).eäòoráingty, / is

án isotone mapping

of (A,

R'R)

into

(8, P*),

where

A:

AI(R'N

llR*-l

and

B : Ble* ll P*-'¡.

proposition 4.1

Tke fømcto.rs

c,

(J,

o

defined c.tboae øve føithfor'l ,ønd, litniús þreserain'g fwrt'ctors.

cn) -u (Ao,

cn) is a

continuous

an

is-nrorphism,

for

anY

i e

L

lor any i,

tiherc

is a

continuous

re

is a napping

s :

lI'

-->,4 (since :'

é) f ¿

:

::èi *

r

t

å'',".*"0

!;rLrl": 2

(t(X))

(since {/o :

i

e:

I}

aLe canonic projections

in lins) for

a,ny set

X C.,4. 'Ihen

s

is

a continuous rnapping

änc1 therefore (A, ru¡ is

t¡"

þroduct oT'the

laniliy {(Ar,

tur)} in the category

of the closüre spaces. corrsequcntly,

the functor c

preserves

the

differeilce kernels and

thé

proclucts a,nd

then C

preserves

the limits'

C1

C

U

I"

Fr

3

fs -__ *'

'I'oir Ens

O

rvhere þ-t,

Fr,

Þ-" are correspondinS; lorgetf-'11

fu¡'ctors

ancl FrC

-!rU -

Þ-.

All

this

futr"lotJ

are

faithful

and there ane

"Irt -

a coadjoint of Fr,

"þ-, -

a coadjoint of

F,

and

"F" -

a coadjoint of

Fr.

Since

the

catego.ry^Is,has

linrits änd the functors

C, (J,

O

are

limits

preserving functors,

it

Îo11ows

from

theorem

4 of (1) that c, u,o

have

ad.joilt functors,

respectively,

,,C, "U,

"O,

We can construct

the

functors

"C, "(J, "O directly. Let

(tl , c)

be

a closure space. We d.efine a relation

RCA x Aby (x,y) <=Il ii| y

a.c(x)

for

any

i, y *.A.It is

clear

that R is

a reflexive

relation. R is

transitive

iff

the clo;úre c is topological,

and

R is an order

tîf Ø,

c) is

a

7'o-1.opo1og;ica1

space (i.e.

x

æ

c(y) atd y e

c(x)

i

a functor C' : Çl ->

Is

and a functor

+ Ord

r,vhere Zo

is the

subcategory

-f : (,4, c)

-,

(A' ,

c') is a

continuous implies

f(r) C"fþU) Cc'(f(y))

anð,

lying iteratir¡e

systems. lVloreover, quasidiscrete modification of the clos

systemand (8,t) a

closure space

C'(8,

c)

- (8, R,).

I"et

/ be

an

is for any x,

y e

B,

y q

c(x)

inp (

cr,

(/(c)) and

therefore

f

:

(8,

c)

Conversely,

iÎ g: (8,

c) --+ (A, c") is

C cn(/(X)) for

an¡,

X C B)

ttren

y

U n(/(r)) and then

(l@),

f(y)) e

-- (A, R) is an

is-morphism. This rnorplrisrns o1

C'(8,

c)

iuto (tt, ll)

and,

(5)

44 M' JALoBEANU I

l)rove

Lltat

C' is a

coarljojlrt

functor of C (tliat is

equivalerrt rvith

: C

is ärr

adioiut for thc ìr;.i;;

C')_

arrcl.ru"'"át'

replace

C' by "C' T¡e

proo{

äiË';';; iiì"; ;""ì;ìäi'c, b;u"t " ?î,,Tir!r,,:äfit

conseqttc'trv:

c(x\,Yx,^/aA s

4

slrntts 'intô

lhc c

o-[

y; :.'ß: ffi f ill 1';:î"",1J ùoi;"ttt!ãt,

is a

1o -

toPolo-

is

arr

ordel' In this

wa)¡, we

ji'?'jllïh1'#'ïoli

"

:i'

T,,'l"i å:"ìi:

i:

4.1

alnð' 4.2.

Ccmbining

the

above results

we

obtain:

Proposition4'4'Tlceveat'eten.flt'ncl'ors'øcljoitr'tsinþøirs'so

thcú

ih;iå'U"*t"g

cliøgrøttt'

[o

be cotnnt'utøtiue

g lrIRÄrlvE SYSTEMS 45

øt'iott,

of

atç iterøtiae sltsteut

(A,

R) : ø

e /)),

zaltere

R: )

{11¿ :

i' e I}'

P

r

o p o

siti

o

n

S.S Ttce ttoøþþing (A,

{R,: i a I}) -' (A, ¡l

{Rt :

øe

ç.

l\\

ctefincs a fai;;lntl futnctor Z : Cis --> Is.

'Þroo¡. Let i:

(A,

{R,:

i' ez,I})

-, (8, {P,,.i.eJ}) be

a

Then, foi any i e I,'(r", y)

e=

R, irnplies (f(x)' f(y)) e 4t

(x,y\ *n {n,:i e1} i-i-,tics (I@)'f(y)) e O {P,:i e tl.

V(ji'-1,Ø, ñ R,.t:ie l)) -n(8, O {Po:l e 1}) is a

u,or

category Is.

P

r op

o

siti

o

u 5.4 The Y: \A, R) -Ì g,

{R,:^'i'

eI}).,

uhere R¿

|

R

¡o,

ør'ty Q.

I, def'ír

hfwl' -fomctot'

of Is

¡nto Cis' Tltis

frnr,ctoris an

adjoitt't

of S

and

a 0f

V.

the set oI is-morphisns of

S(.B,

{P

bi ) are

natura'ilY ecluivalent'

nd

tl

en the category

Is

can be considered'

a

. Proposition 5'4 proved

that

rhe category

Is 'e

subcategory

of the

category Cis'

proposi tion 5.5The

cctegory of .cotnþ|,ex itera.tiae systenr,s is cotnþl,ete - and, cocomþlete.

Proof. In the saÍre lnanner as in

_proposition

3.6.,

r,ve

have to pfove titat the category Cis has ploclucts unq difference

kernels.

Let

{(A¡, {R¡¡:

i e /)

:

¡ a J} be a familly of

complex

iterative

systems.

For any

'i

ç

.1, we define R,

: U

{

is

the

canonic projection (in E ra1ly irducedl..y þ¡,

j e J.

The

with the canonic

projectiors

{(A

j, {Rjt: i

t,:

I}): j c J}.

Properiy

þ¡

is

a cis-morphisu,

lor

any

j

e, J.

morphisms

of

a cornple

{(A¡,{R¡ ieI}):je

:

þ¡s

for

any

I e,J

But for

aî5r 'i G,

I,

x,

ls

CI

o

t,o Ord.

'lop

C LU

U

,,7: T

l

tl

I'rool. Tlrc.[u[ctor "J:To|.-+

c]

"is

tlrc

iirclttsion (a topological si'acc

js a

cLostrr.c orrc,¡

arrj h"n'^r,-aäjoirrt fuilctor' / -

tlLe topological llì'odl [l-

cation

o1

thc

closure Sl,ace.

The cornrnutatiíity

.of . the -diaPram follorvs

fronr the .orrstructiãrr'of tn" run"torä]"Þätiiätá¡y, lC : t¡ :

TO is

just the

ProPositiorr 2'4'

5.

Cornltlex int'cral'ivc sysloms

D c

ti

n

iti olr 5.1' Lel I

be

n

sel'

ølltl

lel'

{R:i e./}

bc

a

fant'ily

ol

*.r"(.'i, in, ' I e 1))

'wiLt

be'cnlletl

ft'

,:

'1 G

/)) be

tr'vo

cornlle" i1"t"li)::

1ed

a

mórphisni

of

cortlllex-.iteratlv'c

.(x'Y) e R,

irnPlics

(l(*)'

J\Y))

e

t'¿

Propositions.l'At't'conoþlex,iterø{;iaeqtstetns.aithtnorþlrisnt.s.

"¡ ,inipirí1t"ioi¡r'i -iltrloì,'

iorno a-ca'eg,ry denoteil Dy cis'

(6)

M. JALOBEANU 11 ITERATIVE SYSTEMS 4V

Proof, First

part is easy. F'or the second, 7et x,

j

be

two

classes modulo

E, and iet be

(*,3r)

e Ri.

Then,

for any n e.t

and

y e,y,

(x,

y) e

R,

iff E is a left-permitted and riglrt-permitted

relation.

P

r

o p o s

i t i

o

n

6.4 (I-st isomorphism theorern).

Letf

: (A,

{Ilt: iel})

-u

(8,

{Pn:

i e I})

be

a

cis-n+orþhistm, ønd

let K(f)

be the h,ernel

"f Í If (All{ff), {Ri i a /}) ls

tl'r,e qwotietr,t comþLex iterøliue systenr, øncf ff@),

{R^n,: í e I}) is

tlte f-incage comþlex 'iterøtiue systenr, then

ue

ltaue tke contrnuíat'iue d,iagr am, :

" (A,{R¡:ie.I\) r - (8,{P,:ieI}) ,J 1'

(,41K(f),

{Ri

:

ie /}) 4' (f(tI),

{Itnnn, :

i

e=

l})

u,lrere /z

is the

canonical cis-morphism,

g is the

inclusion

of the

f-image

- that is

a strong cis-mononorphism, al.: d

f

is

the

bijection indt',ced natu-

ra11y

by Í.

IT

Í is a

strong cis-morphism then

/ is

an isonorphism

in

Ciss,

ancl

is

also

in

Ciss. ConsequentI5,,

if f

is

in

category Ciss thelL

all

above diagram

is in

Ciss.

ProoJ. We have

the

decomposition

f :

Sfh

in

Ens.

If / is a

cis-mor-

phisnr tlren g,

f

and /z are cis-morphisms.

the

propositions 6.1, 6.2 and 6.3

conplete the

proof.

Proposition

6.5

(II-ed

isomorphisn theorem). Let

hbe

øtt' inclu- sion

of (8, U',:

i.

e.I\)

'ínto (A, jl?o: i.

e: Ij)

an'cl

lel E

be øn' equiuøl,ence

i,n

A. .tf AIE

i,s considered. øs

a

swbset

of A, let (B', {Pi:

i,

e I})

be the

contþlex 'itera.t'iue systenø deþnecl

by B' : B ) (AlE), Pl' : P¡s,, i eI.

Tltere ?s ø

cis-bijection

f

: (BIE,

{Pl:i a I}) -- (B', {Pi:i €/}). If

E

'is

a

ccngru,ence thett

f is ø

strong cis-'isornorþloisn't,.

Proof. liunclamentaTly

B' : {x:7; e tIlE, ß,) B =LØ}

and.

x G

BlEs,

iff t €

,B'.

'Ihis bijection (in

Iìns)

is

a cis-morphism. As a

matter of

fact,

we cal-l apply the proposition 6.4 to the cis-morphisrn tlt,

rvhere

t:(A,{Rn:i.eI}) -r(AlE,{R:¡:i e /}) is the

canonical cis-epimorphism.

Therr there is a cis-bijectiot f :

tlo: (B

lK(th,), {Pi

:

i

Ç.

I})

--> (tlt(B),.

{Rnr,tot: i,

e I})

and. K(t/r,)

-

EB, th,(B)

:

B'.

P

r op

o

siti

o

ir 6.6 (III-rd isomotphisn

theorerr).

Let E

ctttd,

E'

be Luo equiaøl,ence relat'ions

in A

ønd. let

(A, lRo:i e Ij)

be ø cornþl'ex iterø-

tiae sustent,.

E' Ç E tlten ue

lt,aae il'te

folloain'g

corntnottatiue diagrøno ::

(¡,

{1lr:1

1})

ElA" {Ri: i e

1)) h

>((AlE)lK(g),

{R f':

i e

1))

*g

46

anvi e. /,thcr

('l>¡s(x\,y'is(r))

*.R,,,namelv(s(r),s(y)) €R,'

Colsequently

t,iÉ, {r i:

t. G

/ji -- 1it.i,,

1

lt'

:

i e 1}) is a

cis-molphism.

For

tr,vo cis-morphisrrrs

/, g: (tI,{R,:i e /}) + (B,tPr:

ø

e

1}) -we

define

a

complex

iterätive

system

(I(,

{Qn:

i e I}) Ylh /{.:

K--erD".

(/,3}

anð.

Q,: R,ir, for arry

'i

e I. I.et

h':

(k,,lQn: i e Ij) l^V.{llo: I F /})

be

thä'

inclusion napping, i.e. a

cis-morphism'

Let l:

(C, {Sr

"

i e I\) -'

such

that Ít : gt.

Then Lhere

is

a

definition

of

1(), ancl,

for

any

i Q I,

' Í,i

?J"5"itlnï"'?'; ß!:h jl?il.n

ifference kernel f.or

f, g in the

cate-

gory

Cis.

The

existence

of colimits follows from theorem 5 of

(1) since th.e category

Is is

cocomplete and

the functor

T/: Cis

-' Is

has

an adjoint

Y"

Nattîaliy,

\'/e can cdnstruct

directly

coproducts

and

clillerence cokernels' 6" Isornorphisrn theore¡ns

Definition 6.1 A cis-morphisrn f:(A,{R,:i'el}) -t

-n

(8, {Pr:

i,

e I,\)

wi.tl be called

a

stron'g factorizøtion' (1,1).

or

ø. strong^cis'

ntoìpki,èn'if, for''an'y ieI

øncl

for øn'y

%,)t

GA, (Í(*)'Í(y))

QPuء

,imþlies (x,

' pròpïsiti'ou y) e

R,.

G.l rltt

contþlex'iteratiue systen,ts zø.itlr str.ot'tg__cis- morþh,osrní form ø category d,enoted öy Ciss. Ciss

ls

ø sr,ùcategory of Cts. lVIove-

orr'ì,

Cirs

is a

bøløncld category,'i.e. euery bi.jectioto'is

an

isom,orfisno.

Def initio n

6.2

A

rel,ation

be calleclleft-þertn'itted

in

tlte conr.þlex itera.t'iae systettr' (A, {Rn:

I

anil

i e' l,

KRn

Ç

4".

Arr, eqati,uøiettce reløtion

*¡u

cøit'eit

a in

(A, {Rn: i'

a I}) iÍ it is ø

left-þerruitted' ønd.

ø

right-þerru"itte

It

is"clôar

that

the identical

ielation I

is a congruence

in

er¡ery complex

iterative

system

ivith the

same

sei of

states.

Definition

6.3

I,et .f,(A,{Rn:i c/}) -'(B'{P,:ieI})

bç..q

cis-utorþhisut,. The bitoøry relation defined irø

A

by

K(Í):{(x,5r): Í(*):fj)l uill

bc cctl,l,ed tlte hetnel

of

the cis-nr,orþlr"isnt

f.

Proposition

6.2

For

øny cis-ncorþhism

f, K(f) is

øn eclu'íualence

reløtion.

K(f) is

a. congluence

iff f is a

strong cis-morþh'isn't"

The proof is

easy.

I,et

(A,

{Ro i e 1}) be a

complex

iterative

system

anrl let E be

an equivalenòe

ii'A. If Ri is the

rest?iction

of

R¿

to the quotient

sel.

AlE,

fo'r

any i e,I, then thå

complex

iterative

systäm

ØlE,-{Ri: i e /}) will

be calied the quotient

complex

iterative

system

relating to

E-

Proposition 6.3

The canon'ical ruøþþing

f :A-nAlE is,ø.cis-

eþ'imorþhisrn

in

the qwotient comþIex iterøtiue systery,

f9r &ny

equcaøle'nce

E; Í ii ø strong

cis-eþiruorþkiswiJ

and'

onl,y

if E t's a'

congruence 1"t1'

(A,{Rn:i=I}).

(AlE,tR::ee1))

where

f

,

f'

and /t. are canc nical cis-epimorphisms

ard

h,

is

an isorrorphism"

If E is

a congruence then

the

above diagram is

in

Ciss,

i.e. all

morphisms are strong.

$

(7)

Áo M JALOBEANU 12 +(t

"å,""':;::iî"å'nJåffi

"fi nl.fl iÏ

fn"¿

morphisms since

/{(g) is

a congruence

ir.

A lE' .

kem,ark.

The final

results can be transposed

lor the

simple ite,ratir¡e

ryst"Àt.--Ái.o, th"

most

of

above results are

indepe'dent of the kirtd

of ,álotlorrn, and

they

m.ay

be

formulated

for n-ary

relations.

REVUE I}'ANALYSD

NUMÉRIQUD

ET DB I,A

THÉORIE

DE

L'APPROXIR'IATION,

Tomc 2, lÐ73, Pp. 49-53

RÐIIÐRDNCES

[1 ] ll e rr a b o u, J., c.riièrcs d.e reþrésentøbili,té d,es foncteurs, c.R. acad. sci. Paris, Ð6{1,

752 -755 (1etis).

[21 ]l 1i k 1 e, 4., Iteiatiue' syste¡xs; an. alg,ebrøic ctþþroaclt, B'11. ¡\cacl. Polou. Sci., Sér. Sci' Math. Astronorn. Phys , P0, 51-55 (1972)'

L3l Il 1i k 1 e, 4., Co,tþIer it¡tuîatiue syslems, Brill. Àcad. Polon. Sci., Séi:. Sci. IvIath' .Asttonom. PhYs., P{}, 57-02 (19:

[4] c c c h, [', Toþologicat Z. ì¡ioliir ¿nd ì\I. I(atetov) Prague, 1966.

iÉl G; ã r'g ". c u, G. " a.ird. Stu' la cató.gorie des systèmes logiques, F.ev.

Rãutn. Nlatir. Pure , 489-495 (1969)'

[6] II a t c h c t, \á. s., syslcril.es forntels et catégoyics, c.l{. acad. sci. Paris 460, 3525-3529

( 1e65).

l7) J al o e a r.r u, I\[., Son,te toþological ancl caíegot'ial a_sþccts oJ c.omþtr'ter theory, \I-athe- rnatical lrorindations 'o{ ðornpuLet Sciencc, Warsarv, Àugust, 2l-27 (1972)' [B] Ks.aso*.iec, $/., Ilclationøt Maihines, Bull. Acac1. Polo., Sci., Sér. Sci. Math'

Âstr-onorn. Ph)'s., 18, 545-549 (1970)'

[g] iU i t c h e l l, ll., Thío,ry of' Categori.es, Àcacì.emic Prcss, Nerv lorl< ancl l,orrrloir 1965.

¡iOj f as. 1a1<, L., ùIaszlnty Tirogra,tlooaatoe (iir^polish), Algorytilry,_ 1t|, 5-19 (1969).

ilfi S"hecht"t, ittot:lé-ïlicheliite, Cot¡tyibr.t!,ii ìa studittt algebricoJogic rtl s¡:rttc'

tttr'ilorrclalionale,Doxtc¡r¡'lTliesis,UniversitateaBucuregti'1972' Rcccil'ed 1 XII 1972.

SUPPORTING SPHERES trOR FAMII_.IES

OF SETS IN PRODUCT SPACBS

l)y

HORSl'KRAX'IER

(c1nj)

In.sLitttt ttl cle I zotttþ'i Stab'ili, Clt'tj

I.et

fuI

be a

given set

in the

n-dimensional Ëuclidean space R". We

slrall

clenote

by

conv IVI tlne convex

hull of Il[,

i.e,

the

intersection

of

aii corl\/ex sets

in R"

which colltain

the

set

M. Itt the

following we lleecl the

llotion

of convexly conllected sets introduced

by

o. r{aNNErt ancl rr. RÀD-

srnÖu iu tsl

Def iiritio n l. A

set

M in R"'is

callecl clnüexl,y connectecl,'íf there 'is no hyþerþLøne

If

such tlxat

H À M : Ø

and'

M

contøitt,s þoints

it't

botlt' tl,r,e oþen lcøl'fsþøces deterntinetl by H.

Retnørh. The notion of convexly connected sets is used

in

[B] also

u'ith all other

meaninS.

It

is easy

to verify that

a collllected set is also convexly collnectecl a1ld

that the union of

convexll¡ connectecl sets

having a point in

commotl ís

con\/exly connected.

Def initio n.2. Let M

be ø set

in R". A

mãxinl,;LlconueriycotLtLec' ted, sttbset

of

fuI

uill'

be cølled ø clnuexly connected col'lxþltxent of Ìl'L

O. Ifanner

and

H.

Radströrr harre

showt'chat

there

is a

1lllicll1e de- composition

of a

set

M itfto

convexly collnected cc1xpone11ts.

îhe1'

[1¿1rs

also provecl

the

following

resúlt ([5], corollary

1)

| I1 M (

1i"

is

compact ancl haS

almost ø convexiy

connected cornponents,

then for

each point

in

conrr AtI there exist

ø

(or fer,r'er) points a.1, ct2,

...,

ct,, of r4zl such',-hat þ belongs

to

conv {or.,

or, ...

ø,,).

I-I. KRAr{rìR a1ld

A

B. NrtlrETH

have given in [6]

bhe

follorving

two clefinitions :

Def inition 3.

Tl't'ere

uilL

be saicl tl'tat tl'te føtnil5t

F of sets'in

a tnett'ic sþøce

E

l.tas

a

srl'þþorti'ng sþh,ere,

i'f

th,ere

is a

sþltere

S in L

ltøttilog

4 - Relue clanalyse numórìc1uc et de la théorie de l'apProximatior, tome 2, 197:ì.

Referințe

DOCUMENTE SIMILARE

In the context of constructing consistent cross-couplings in D = 8 between a topological BF model with a maximal field spectrum and a massless tensor field with the mixed symmetry

Dendrimers have been also studied from the topological point of view, including vertex and fragment enumeration and calculation of some topological descriptors, such as topological

The increased dissolution rate in ternary systems of bicalutamide is attributed due to presence of L-arginine, which can form salt with drug giving amphiphilic structure

For each sample from the generated ones, ts fake we find two consecutive time steps, ts 1 and ts2, such that we minimize kclose ts 1 − open tsfake k, kclose tsfake − open ts 2.

Theorem 5.8 tells us that if (X, d) is a metric space the notion of a closed set is the same whether we consider the metric or the topology derived from it.. Just as in the metric

The program of matching “interesting” topological properties of a com- pletely regular space X with “interesting” properties of the complete upper semi-lattice PE (X) is

In [14], the authors studied all linear maps Φ on B(H ) preserving in both direc- tions semi-Fredholm operators. It has been shown that such maps Φ preserve in both directions the

This study investigated the responses of maize (Zea mays L.) and cowpea (Vigna unguiculata L. Walp.) seedlings growth parameters to nitrogen nutritional stress.. This was with a