• Nu S-Au Găsit Rezultate

View of On interpolation operators - IV (Estimates in the neighbourhood of nodal points for differentiable functions)

N/A
N/A
Protected

Academic year: 2022

Share "View of On interpolation operators - IV (Estimates in the neighbourhood of nodal points for differentiable functions)"

Copied!
5
0
0

Text complet

(1)

J\TAT}IEI,IATICA

-

REVUI] D'ANALYSE NUNIIiRI QUE

ET

DIi

TIIÉORIE DE I-'APPROXIMATION

Í,'ANTTI,YSE NUTIÉRIQUE

ET I,A THÉORIE DD

L2APPROXIÛTA.TION Tome 14,

No 2,

lÐ86, pp. 137

-145

ON INTDRPOITATION OPDRATORS-IY

(ESTTMA1ES

IN TEE

NEIGHBOURTTOOD

Or¡ NODAL

POtrNTS FOR,

DII'I'ERENTIABI-,8

FUNCTIONS)

I{. ll. SRIVr\S]'AVA and lì. B. SAXIìNA (Dar cs Salaan-r) (Lucl<nolv)

l. Introduction and

tesults.

Man¡' constructive

a,pproâch.es have been mad.e

after the

celebratecl

Telyakovskii [8]

and. Gopengauz's

[1]

-bheorems

that

were established

through

classical methotls. Contritrutions

by

Saxena, Freud,

Vertesi [2]

and,

of

course, ma,ny others

in

i;his clirec- .bion are not beyond comprehension. Recenl,ly,

in

a series of papers l4t 5r

6]

we

formulated certain

iclentities rvhich formed

the

ac1,ual basis

lor

the

.construction of interpolatory

polynomials

leading to the

reprotluction ,of Telyakovshii-Gopengauz's

theorem

18]

for functions

whose

first

deri-

vatives are

continuous.

Following

an idea

put forth by

lVleir

[3]' iij is

possible now

to

con-

struct a

sequence of

positive linear interpolary

operators

rvhich

satisfy Teþakovkii-Gopengauz's

theorem

(and,

of

course, some

other type

also

in which

estimates of the differences can be expressed"

in

tcrms of the nt¡ds .,of nodal points).

It is worthwhile to mention that

1,hese estirnates

reflect

l,he

fact that the

operators are

interpolatory:

2. The

oparator

Q"*(Í'; n) (m 2

0).

Lct

ø

:

cosfr

frho:

cos¿¡;¿

'(2.1)

lnc - --

t¡o:--)lt,:U.n

11'

:anclforh:O¡2tt,-L

.(2.2)

sin

-

f*n) cos

|-A - rr,l

gr '(ü)

:

znsinf,$-tr,)

*lt " ',8,

cos

i

(¿

-

t,n)

-t

cos n'(t_,tr,^))

:3 - ç. 151'1

(2)

If

there is nô danger òf confusion,

rie'sltll_lwrit"

tn,

ntr

g*(ú) etc.

in

place

ît

tr"r-

nri,9¡,

(1j) õtc.

froù ilow

onwarcìs' Denote

by

2n-l

¡u (¿)

7 l\

rz¡o+q¡n(¿)

: I 9l'*o

(t')

'l ON INT-E.R'POLATION OPERATORS _ rV

1iJ0

,,'n

r^lrrr,

tnr' rur:j

¿ :

:

1 r:i' haue

.fot.r e

ll-1,1.1

.(2.10) lQll,U; a)-f{,,) (n)l <

c,,,

{ry\"-u^,r*¡(@)

,,)

- 0,

nI

tive constant ancl

l;,Ám) (

.) is Ure

usual

and (2.2)

that the

follorving

iclentity

holcls :

Qn,,(Ï,ø) =

1,

,l = I

*

lcosú

-

cos

t,l-+t-r

rzn,.r,t(t) I<. B: SRIVASTAVA, ñ.; B. SAXENå'

,tr+2

:I

cos 2vt¿ü a,n a,bsolutc nosi

c,ontin¡i1,)' of -¡t,,t .

trom (1.6)-(2.4)

á.38 2

(2.3)

(2.6)

(2.8) where (2.e)

rt hct'c c,,, is modulus of

lVo

obsclrr.e (2.r]_) wlrere ø.,n ts a,l'e polynomials

in

m

of

d'cgree

12m' f 3

such l'hat

(2.4)

Ù'12

(Zn)z''+s

: Ð

o,n.

v:0

tzn+ctn(t)

is a

polynomial

in

coßÙ

of

d'eg'r'ee

"¿"¡llt,f,$*T-jT äTïi.T-

?-

Ji'i

:

i.e., Let it

be

, i.e.t

(2.ú) 1> ¡,'(f))c,v'

Let

us also assume

Fo,,o(fr)

:

gï'"*n (t) Fr,r,(û)

:

9';:+o (t)

g,,,(u):

qzn+A(t)

-l

q'rTiIî(t);

is ryorl'c,rrn.ar,irrg

tJrat (2.10)

is the

stronger

losulls

csrabtishiq vcrs

:-,!;,f"'ri;ïäËirpels

14,

;ì, 6l

tlral; rve

hrr,r'c

a constlucl,ii,c and

Jrmptc

proof

gauz's thco.cm' u-" riòiì' .iåiät-i"å¿

rhe compricar

ou.

asscrtions.

rlt â col_rseqrcr*"}-Þ.i-0) ;,;'ä.;

flr'rnonnu 3:^-

L*,f(,,ù e c[_1,1]

aytcl

_0<u<I be giaett,

then fot.

rrn'.r¡ rt.cttu,r,ctl nu,mher tr., ru'e ltaae ttitifir:m.Ly r:r,

¡l]i

¡-

- ",

(2.r2)

tQli,I

(f ; n) _

lt,) (,r,)i

:

o

{J. ra?,,I 1

,

o,,,,,,,

(#),,,:o,n

for

v

:

nt,

lve 'emarr' 7t*(2:!z) e-rpticiry exhibits the interpolatory nat're :'i,"li""n"n?'fi

",*f o"Í*ify3;"*Jt"#, j¿11T,J""iJu"'Tåh;;;i"-i-ö.:

3' rn ,re

forlowing ìve p-rg.,e

u f:y.

asserúions gir.en

in

bhe

form

of lemrna

which we

neccì

ío

"ÁtãÈii*t

äo" ,n.oru^..

LDMMÄ

I:

We haae u,niforml,g

in, l_1,11

,t 1, E tr-

ür|,,+t-u er,*

(n) : , (T-,)"',

'-u,u

: olñ,

ancl,

(3.2)

.'Ë ø - n,.fntt-v

tq':,k@)t

:

o

(lfI=

*,1''J-1-2v

¡:o l.-" )

o,"n

,'fl;fifrliÏflr?,:T"t?#:""mations

bv

putting

ø

:

cos

t,

ø, =:sss ¿o

f

W

- arlrn+r-,er,,,(n):

#, 'l- l.o.

Í

-

cos t,.lr,+t-,, q1,,*4 (t)

7

fzn-t

: t

^'

(r)

[

,,Ðr i cos

I -

cos l/- l''+ 1- '/ ozu r-+ (t)

Ìa:t¡ n -X

and-

(2.7J h,*@): #; k:03'

Then for a,ny function / given on [-1,1], rve define the

operator Qn,*(f, æ) as follows

Q n^(1, ø)

: tr

Tt,',,gr,*

(fi) , m )'

o

lì-O

(u - n)"

{lrr,ur: \

v:0 v! ¡t"r (o¡).

fn the

following'we Prove

Tsnonn¡r !'Qn* ff,

æ)

is

a rationøI Junctiort' oJ ord'er

{(znt'l+)

n'

f

m'

Qm'

! a)n)

and'

(i) 8,*(1, üù :.f(r) lç:

O,¡t'

øù

AgL

(î,

ur)

:

;f{u)(ø¡),v

: T-,

n't'

h+j

(3)

I<. B. SIII1/I\STAVÁ" Il. B. SA>|DNÀ a) ON II\FTERPOLATION OPERÁ,TOR.S * T\/

140 747

\\,herc

j is

tlefined b¡' (3.3)

ì\,Iaking use of

It-t,¡ç ' -L

Ztt'

"ooot1r"rî*r:r';lî"ffi1!.t#*Jho

second parh

of

rho lernrna wo trâ,vrr, on iìc_

(3.7)

qÍ:.1,(â)\

-f I

P,,,*

v"("1

(a) Jft"t

: å('r)r're,(') (--1- [.,'

Norv' orving

to the

rep-eated use of À:[arl<or,ts irrcrlrLa,lity ftrr, tÌrr¡ rlt-.r,iyiìti't¡

of the

polynomial, wdhave.;

- - "- *'-

lcost

-

cos

t* | < 2

sin ¿

sin-l-l ¿l-

¿¡,,1 1-z sinz..t;-

t' -

'-1

a,ntl

l- Þ)' 4

ZP-t (a,'

)-

bo)

(3.8)

ft is

obscrvccl l,h¿rú

(3.e)

'l'hus

.n'c .have (3.10)

lp,{iJ

(ø)l

< IL !L

a,nd tlenoting (3,4)

[r-7

ip^.,,

(r)l

't)¡, ==-

)

r, gir.

!

(tr

-

1',,)

lV,r'(r))r,-,, I g ø, Iurl>-

2í.'-1,

r;

: ll, - .il ,k + i

',

k-

0,2 n' -=L

j :

0,2

tt -'1

rve

at

once obl,ain

(3.5) tr

ll lr,,

-

#t,.1"')1-nQrr"n,

(fr) (

2"'-"

À..=0

sin f ,r)-l -r 2rL -1 1 lqî'.),,(r,)i

4

2u €,,, 1t r, ,r, (u')

2 tt,

x

lo* In + s-t'v

,li -=0 On ¿rccount of (8.10), (S.9), (B.g) :rnct (i3.?),

l.o

obLain (lì.2).

LnMITA 2.

Itor

e l_1,1]

a,t¿d, v

:.

0, i:,i

tt

.X

lø-ø¿-lar-l-t-, qr,*lr.t)

-O1n -

ar,. l)ør,¡. 1-.u

, ,),: Oit r +

lt;

/ú:0 ñ

,ä1, -

ã;,.lut'tt-', q12,,Ø))

-

O

1r - *,t)ut.t.t-2,,r.: OjrI, *

l¡.

lhe proof

depenrts upon

the

follorvinp; inequ:r,lit;ies :

sinú

< 2 sinÊ+.-L\

anrr \z I

(3.11)

lsiu rrf

| ç 2rsirr t

l, -

,,.t.

2

We

m¿r,ko use

of

Lcmrli¿r,

1 to

¿rccourplish t,ho ¡l,oof.

4- Proof

tllo

r,rreo*em

2 lor

v

-

-0.

o'

aocornt r¡f ûhc

itle^tity

(2.11), rve have

frorn

1Z.O¡, (Z.B) ancf

-þ.?)

ihc

ictentii¡.

(4.1) l@) *

Q*o,

(1; rl : É

Å:o U@)

-

,r,*

(*)l

gr.,, (n).

h+r 1 1il-i 7 -v 2¡t-1sin2,¡ i.2-2v

I t, -

t,,) gîr*. o(t)

I Or¡-v

1't 2tu

2

| )u,r,-.{(îiu)

h+j

l¡¡ ì- 1 -v gin¿+ 1- v f) ì

+ I

(4n)"'+t-'

sin t rn-t- I -v ]_ 1 srn

t

'¿+1-v 1

5

10, lo'+s-tu

+

Zilï+1-\

X

aftu+z

'll' n

+

t

u#)-'"{'*#-}

SIN \r¡¡.rl-v I 1 ì- I

ì l1 + -- [ç-'

/ ì- t2rr+7-vla a'ì*'

n T[ete \\te ha,ve made use of

lq'l(¿)l (

1'

anc[

(3.6) lsin

ri'ú l

<

l

z'l

sin Ú l

Thus

from

(3.5) owing

to (3'4),

we have (3'1)'

(4)

742 K. B, SRIVASTAVA, R. B, SAXE.NA'

We

makc frequenl; use of

(4.2) l\i - E

lll

(, -

rh)v./0,l (¡nr)

:

0

(ln -*,1"'to,(nt) (lc;-e;'l)

v'=0

which is þasecl on l,ho

finite

Taylor's expansion. l]Iaking the transforma,tiolr

b)' nsing # :

cos

t¡ frt,:

cos

fr

and-

using

(2.9)

-

(2.6),

u'c obtain flottl

(4.1)

.f

(r) --

^,,,

(l

)

n)

-=

tr

(,/("os

t) -

g*,,n) gi"*n A,n (Ú)(¿)

1

,ft,4

A

sinn

nt -- !\

sino r¿f

60

90

- -L¡-r_r 11 ú ntf_

sin' /¿ú

- * [¡*

sina

øf * ,* sit J t

t (zn)?

A direct

compul,ation

gives the inequality

1 > ¡ B^(t)

>- '874'

Now, our

main

aim is to

show

(4.4)

l8:i),(1,

n) - l$(n)l : o

ON IhI"TENPOLA"TION OPERATONS _ rV 143

+

¡+j

+ -+

(./ (cos

t) -

!J1,,,) q\'"*n

(t) - Tt * T,

.

À'(¿)

fn

orcler 1,o esl,inrate

thc

stlmm¿r,nds

?,

ancì-

l'r,

tt'c m¿lke uSe of lernma 1,.

(3.1)

for

:- Q,

(4.2).

.I.n

i,he

simiiar Îilshion, we

cân pt'ove

theolcm 3 fol

v

: 0

n'hele' we lìa,\,c

to

use

lcmma 2 for

v

:

0.

We ttistinguish the

follorving trvo

czrscs separatol¡r ;

c'1asc

r: \\rtron U+

" þ#!L

a¡rd

.¿r,sc

rr: when]/t - n' -,

Ia'

-

er, .

n, -

ITr-*

'lo illustrate the validity of

l,heorem 2 ancl 3

for

arbitlalY_ v,

let

us

take

¡hã

particular

case

of ni -: Z.lġc ha'e from

16l i,he iclenl,il,y

" : I I

rgogz+srrt

-

?1680r¿5

)'

7-9712 ns

 r,

(Í) : I h.o

çÎ' (¿)

7I(Zrt)zl"

--5280r¿

l- 'L28 \ -3I- Fl

soq,sga?r7 -l- 26880 rtl

-

22L76 n'ï

)-7Ð20n- #)

cos2rtl -f- (sozzo?ù? -l- 430081¿6

-

3168r¿

l- 28- ) "u*

4tl|

-)

(2lt6n1

*

1792

!2E

l

1-2464tt3

|

it28r,

- -

r.28

l--

cos 6mt -l- --:1

12IJ -

cos 8r¿l J

I

fl'he version

of

theorem B reacls as follows :

(4.5) te[i,l

ff,, n) -.[t\t(n)t : o(#)'-"o,,,, (ry),v: L,2

1o

prove theorem 1

for

v

:

Lr 2 tve require the following pí (ú,,)

:

q:;'(ü,,)

: çfþ-, (tr):

0

for, k:0,2,tu _

.L

ql ft,,) * o:

q2k0(tþ).

(4.6) a,nd (4.7)

2rL-1

,nt

- ---

l[T-ç,

,IL 2-')(ù/

v:Lr2

sina r¿t

* å

sino rr,l)

]-r

t- ;

sinz r¿ú

+ '+

sina r¿l

- -f,

sinu n'l

]

ff

wo clenote

by

(4.S)

br,,

(t): 9f

(r)

then, from (4.6)

and

(4.?),

.rve have, ¡"(ú)

(4.9)

b'o,, Qr¡

:

g

a,nd

hi',t(to)

: 8

g;J(¿,,)

- Aí,;(tr) bi'2(tt\:Ort¡*j.

therefore lrom

(4.9), (4.8)

and

(4.?), we obtajn

(4.1-0)

Lçto,r(t) b^,,r(t)f',-,0

:.f'(n¡),k : 07 n -l (4.1L)

Lsr,^(t)

br,r(t)1í:,¡ : o,

rt

{ j

and

lgu.z$)lt,,,r(t)l!,!,r:.T(nn)

{

8

qi,(úo)

-

^6;

(ür)}

I

1,' @r)

_

1,, (ø*),

To

complete

the

proof, u'e shall require

(4.L2) f.

il f

- -

n,^ ls-v quz@)

: o(V=-*)'-" , v

--=

r,!

(4.13) l* - {ttl4-vlqi."@)¡ : g(VI - n:¡ì'-"

- u .= ',

¡lo' \ " ) ,v'-=1,2,3

(* *""

1

7l

)

o 5

+ ['

1

t;,

(5)

14,t I<. B. SRTVASfÁ,VA, R. B. SAJ<DN¿'

I

I ON INTER,POLATION OPËRATON.S

- TV 145

and and

(4.L+) ¿f ,

q,,lu-',1qtr',,(n)l

:o (l/=")' ,v:1,z.

\4re skotch proofs

oT

(a.12)-(4.14).

FromL¡ernma

1, (3.1),

(4.L2)

can

oasily

be

deduced.

For

(4.13)

to establish

'we

ortce

nrore

tako

(3.3)

into

consideration ancl 'lvrite

Ð

1.,

-

erl-l'r'-v

q'l¡fu) : It *

Iz

¡i:0

|

¡li'ft) I (

56 n¿

)XfjilÌ 9i*ily.dernonsrlare

l,hc

proof of

(a.1a).

rne

sÍùrne methorr applies

to

get,

flre

'ersion bf

theorem

3

rot, nt

:

2 IìJIITDIìIìNCIìS

where

(4.15) r,

'-=

;-

srn 1

¿

'i-

{"o*

f -

cos ¿-)'t-"

I

8ç[(¿)

e;(r) -

Aå,,(¿) ef (¿)

Tj^.1,::J: U.te approrimotion ol functions bu

,2

(1967), 1ôJ-I22 (Rrrssrnrr.¡.

rcIt proccss, .Ann. Uui\'. Sci. Bu<iapest, l0

ot:Ìmatiott, Canad. ìInth. l3ull., Êl (192U), pp.

tt.,,jrll

lntopolotíon ttperntors __I (A proof of

ns), L.,an:rlyse numcriquc

"t f"

Ur.ùi"i"i"i_

lllA

pr.ool oI f.inran,s theorcnr for dilfcrcn_

_ ltl11}

prool oI l.cìyakor.skii_Gopengauz,s 0, z, 1981, pp.24?_262.

ouslcii_Gopenguz lheorcnt througlt irtlcrpolalion, 279.

on lht

_opprot:imstion of luncliotts by algebraic b2 _ 2Gl-r.

^3,(¿)

t¡+ j

â,nd

(4.16) t, : #

(cos

Í -

cos

¿,)i

"

I

8e; (¿) et

0\-

^;,,

(¿) ,pl (¿)

^3,,

(¿)

tr'or

the

esl,imation

of

(4.15), 'we haYc,

from

(3.4)

.'"#:E,l

**i {*t", *io! lt -

t,,,

}'-'* {-* j

- Í,,)}8-'?"]lsi{-ar

I

l:lccciled 4.III.1g84 27-u n

sin f

f (sin f )4-"

z5r

lsin? nf I

r

1

|

1z

n¡o-" ,Êo

l,u* lo

" ' (zn¡a-'"

2n-1 lsin? rr,f I

_I)e paLt ntc nI o f M atlrcntttics,

^Unioe-rsity ol' ftar es Salcrunt,

P. O. lloa JîTtip, I)or es Saloánt TanzenÌa:

I )epat lmetú of Il,I uil:intaties atd Aslronont¡¡,

- LttcA'nou¡ (J niucrsity.

Lucknota* p2AOOf 1U,n¡

Imlia

k=,(t

I

h+j

þ+i

. n /sinf

/ 5tð--\) ,

\Z

-

sin¿

\

2n,

'-'x j'

: o(V=o)'",

u

: L, z,

:i

Ilere

we have rnad,e use of

(4.17)

lçí(¿)l *

,';l

ancl

[(^i,,(¿)l <

8m

Similarly,

owing

to

leí,'(¿)

l . +:

Referințe

DOCUMENTE SIMILARE

In the present note we study the degree of simultaneous approxi- mation by certain Birkhoff spline interpolation operators.. Special emphasis is on estimates in terms of higher

By cornbining thcse 1,wo rnethocls ther-t¡ r'esLrlts a,n cstimir,te tbat intproves thc.. Estìmatcs for linear positive

ì[cyer_Iiöttig aruI Zeller operators, e llrcorcnts for Bernslein ¡;olgnontials, Itrcliana.. Iiott of

ln this papcr', s'c sìrall extencl some 'n'ell-knorvn l¡asic results in monotone operlatoLs to the cla,ss of Jf-rnonotone opelatols.. The opelator á is

lrattcrn of estimatin.g.. Exrrrrrples,: lleIinerl lJsriln¿rl.es l'or_ .r¡r¡lr.orirnariorr b.t.. Pointtoíse Appronimcttíon, bu the operators oJ Meyer-I{önig ct'ntl

In the following we shall stick to some sequences of linear positive oper'.ators, illustrating the generality of the method presented in thc pre- vious paragraph...

Introiluction : So far we studied interpolation operators giving elegant proof of Jackson's and, Timan's theorem for differentiable func- tioäs cteffned.. We formally

f., 'An àdentily Jor sþt'ine funol'ions uith øþþlicalòons lo uariation ili- minishin{ sþline