• Nu S-Au Găsit Rezultate

View of Some properties of the linear positive operators (III)

N/A
N/A
Protected

Academic year: 2022

Share "View of Some properties of the linear positive operators (III)"

Copied!
8
0
0

Text complet

(1)

46 IosrF KoLUMBAN

erfüllen und die l(ostfunktion

10 RET/UE D'ANALYSE NUMÉRTQUE

ET ÐE LA

TTIÉORIE

DE L'APPROXIMATION,

Tome

g,

N0

!, lÐ74, pp. 41_Gl

f(x, u) :

max

T

I

to

ù(x(r),

wþ),'t)ctt zum

Minimum

nachen. Dabei

ist U c R''

beliebig.

Mit Hilfe

einer Zeittransformation vo11

Dubovitskii

uncl

Milyutin

[1]

lässt dieses Problem sich auf den Fa1l

zurückftïhren,

wenn lo

: 0, T :

I, m

: r, e@, u) :

otÇ@,

ão¡, þ(*, ,,

^)

: uþ(x, ã0,

^) mit

gegebenem

ã,0

tnð. U : {, = R lu )

0}

ist.

Sind

die

Funktionen

g,

rl.,

und ,I

stetig

und. besitzen sie clezùg7ich

x

stetige Ableitungen, so

folgt

das

in [3]

erhal-

tene globale Maximumprinzip aus dem Satz 4.

gOME PROPERTIES OF T}IE LINEAR POSITIVE

OPERATORS (rII)

by

AITEXANDRU I,UPAç (cluj)

LITERA'TUR

[1] Dubovitskii, A. Ya., ancl .4..4.. Milyutitl', Dxtrem.urn Pyoblems in the Presence

of Restriotàons, U.S.S.R. Cornputational Mathernatics ancl Mathematical Physics 5,

3, 1-80 (1965).

t2] G i r s a Ìl o r', LV., Lectuyes or¿ Malltematical Tlteory of Extretnum Probletns, Lecture Notes

in Economiecs ancl I\fathernatical Systems 67, ]letlin - Heiclelberg - New York, 7972, Springer - Vcrlag.

[3] Gurin, I,.G. and E.l{. Stolj atova, Tlrc Mat¡itn.uno Princiþle in. a Miøi,max Pro- blent, U.S.S.R. Cornputational Mathematics and Mathematical Physics 13, 5, 1175- 11Bs (1e73).

[4] Hof f mann, I{.I1. und I. I(oltmbán, Verall,getnei.toerte Di,fferenzierbørheilsbegri,ffe

uncl ihre Anuend.ung i.ø d,er Oþli,tni,erungstheor'ie, Cornputing 12, 17-41 (1573).

[5] Köt1re, tretg G., Toþologische li.ncare Räu+ne f. 2. Auìl,, Springer-Verlag, Berlin - Heidel- - New York, 1966.

[6] L e nr p i o, F., Ta+'rgentianzatanigfalli.gheitey¿ unrl infi.ni.te Oþti,m.i.erung, Habilitationsshrift, Univelsität Harnburg, 1972.

l7l I' ja sternik, L.,{,, uncl W.I. Sobolew., Elernente der Funhtionalanalysis, Betlin, '4.kadernie-\¡erlzLg, 1968.

[8] N a s h e cl, I\'I.2., Dì,fJerenli.a.bili.ty at.d, Related Proþerties of Nonlinear Oþerators, Some As- pects of the Role of Differentials in Norrlineat Ilunktional Änalysis, in: L,B. Rall (ecl.) :

Nonlinear Funktional Aralysis and ,A,pplications, New York - Irondon, Academie Press,

103-309, 1971.

[9] Psherrichnyi, 8.N., Necessary Cond,itions for an Extrenntm, New York, 1971, Marcel Dekker. fnc..

[10] L W ar ga, Minimax þrobletns 4m the calcul,us of uøriali.otts. Michigan M.af'n. J. 12, 3, 289-311 (1e65).

tl1] W e 1 n e r, J., I.agrøngesche Vøriationsþrobleme, Vortrag anlässlich des Symposiums übet infinite Optimierung uncl optimale Steuerungen am fnstitut für Angewandte Mathe-

matik der Universität llamburg, Hamburg, 1972.

1, Introduation

þiugegarrgen am 12. XIL 1973,

There are many approximation

processes corstructed

by

means of

linear positive operators

ì"hict

enable

point of view. This

means

that

the elements

from the

domain. Likew remainder-term on the class

of

non-

"åiîi;ni# " råil rãi,'1Ëi- ffiî

ens

ln tlle

case

of many

variables.

we pfove

s a

linear

-¿l<0

iable

was some pfoperties

of the

sequence

It is

shown

that, in the

cãse of cfeasing on the class

of

non_concave

e

Bernstein operators defined

on

a

the

sense

of I.Schur). The

proofs

At the

end

of

thi,s, naner.we get

II

"rurnpte of

polynomial operator y'hi9h interpolates

at thê'iertices ãf u

"oorr"xþorygoã-r'rrã

i, positiv; i;

its

interior.

Uni,uevsitalea,,Babeç-Bolyai" CIuj, Føoultateø de Matemøt'icà,-Mecøni,cd,,

Cated,ra de AnøIi,zd,

(2)

48 ALEXANDRU LUPAS

2. The

sign

of the

remainder-term We use

the

following notations and terminology:

K is a

comPact, convex

set in R*,

nL

> l;

c:(cr, cr, ..., c^), x:(xr,

fr2,

..., fr^), [:(t1, "',

er(t)

: l,

e¡e(t)

: ¡0, Q, x) :L.'o*ot

h:r

11

f

:

K

-+

R, then

th'e eþigrøþh of

f

is

Epi(/) : {(*, y)lt( '. K, y =

P.'

y

>

f(x)}.

K -' R is

called. notl-concqne

on R iff for

every

yi = K,

þ,þ>2.

Í (D þþ

o¡Y¡)

D

a¡Í(Y¡)

t':t i:l

whenever

ø¡e10,

11,

i:1,2, '..' þ' et*ar+ "'*%:l'

By B(K)

resp.

c(K) we

denote

the linear

normed space

of all

functions

k'-, n *ni"L aie' bounded, respectively

continuous

on K. They

are normed

by

means

of uniform

norm.

An affine function on K is

d-efined- as

e(x):(c,x)lr, %eK,

where

r is a real number. Let E

be

the

collection

of all such

affine functions.

A linear áp"ratot L: B(K)

-+

B(I{)

þreseraes the

ffine

funct'ions

iff

(U Le: e for everY

e

e

8'

It is

clear

that

(1)

is

equivalent

wit

Leo: es' Lat'*:

e1'P' h

: l' 2' ' "

%'

rHEoR-ÞM 7.

IÍ L: C(K) + C(K) is a

I'inear þositiue oþerøtor uhich' þreserues

the affine

funct'ions, tken

/(ø)<(LÍ)(x), xeK

Jor eaery

Í = C(K) uhick is

non'-concøae on

I{'

PROPERTIES OF THE POSTTIVE OPERATORS 49

Proof.

The continuity

and non-collcavity of

/ imply that Epi(/) is

a

convex bod.y

in

R'o+l. Iret

n: {@,y)lx =Rn', y e R, (c, x) i

c*t_û

* c,rr:0}

be an arbitrary

closed hyperplane

in

R*+1

which

bounds

Epi(f),

say

(c, x) I c*+t! *

cnt-z

) 0 for (x, y) = Epi(/).

Becanse

for

each

t e K

the

point

(t,

Í(t))

belongs

to Epi(f),

we

may write (c, t) I

c"+rÍ(t)

|

cn,-, Þ 0.

By

means

of the

monotonicity

property of Z

(2) (c, x) i ""rr(LÍ)(x) *

cnrz Þ

0, x e K.

In

conclusion,

if Epi(/)

lies on one sid.e

of an arbitrary

closed. hyperplane,

then {(r, Øf)@))} lies on the

sarne side.

If we

assume

{@, Qfl@))} )Êpi(f) :

Ø,

then,

according

to the

second. separation theorem

of

convex sets (see

[]

p. 58 or [12] p.

65), there exists

a

closed. hyperplane

H, in R,+1 strictly

separating

{(x, Qfl@))} and Dpi(/).

Thus for

Hr:

{(%,

ùlx . R*, y = R, (ã, x) i

õn+û

!

e

,¡2:

0}

one has

(c, x) Idnrt! tõ*+z > 0 for (*, y) = Epi(/)

and,

(õ, x) -f

ê"+r(LÍ)(x)

|

õ,*2

1O.

Btrt this

contradicts

(2)

and

the proof is

complete.

As an

application

of the

above theorem we may prove

the

following two-dimensional

variant of a well

known

result by r. popovrcru

t9].

Though

this

result was established.

by v. r. vorrKov U4]

\rye

present

a

new, shorter

proof.

4 -- Revue d'analyse numérique et de la théorie de l'approxination, tome 3, oo l, 1974

2 3

tp, " ',

tr,r)

A function /

j : l, 2, ...,

(3)

50 ALEXANDRU LUPA$ 4

'IHEoREM2.LetKbea'cornþaetinW2ønd'Ln:C(K)+C(K)' n: l, 2,

. '

', U,

o"

-i,q*in"-

i¡. itiae

oþerators uloich' þreserae

in' i¡;l' irnition'' If o e C(K)

a's

O(*,

Y)

:

xz

I i'

ønd'

l1x lln - L,all :

o'

th'en

lim ll/ - L,fll:0 for euerY ¡ e

C(I<)'

Proof.

¡"1

Ç{'z)(K) be the subspac.e of.C(K) formed

with all

functions

which have "orrti,liJrr!'ö;i;""ä"ri""ti""I ãt the

second order

on /('

For

/ e

Ç{z)(

()

1et

us

d'enote

¡r*: i vn'+

Íl't"

+

st : ; lÍx,+

AL

-! (il,- Íì)'*

4ÍyÀ

as

well

as

(3)

ßor (x, Y)

atbitrarY

in K

Put

<pl^; (x, !)l:

À2

- I ffh@' v) +

Ít'""(x'

v)l +

i Í\,(*, ù

Í1,@,

v) - *@, !)f''

It

may

be

seen

that

glmrt

@' Y)7

> o' çlMIt;

@'

Y)) >

o

(4) qlÍl'(x,

Y)

; (x' Y)l <

o'

An

element

g from

CPI(K)

is

non-concave

if its

Hessian matrix

6iyoll by,øll

is oositive

semi-definite

for

every

(x, y) = x

(see 1111,

p'

27)

Let¡eÇ(z)(K)

and

s: +M¡ 'e - f' s:Í - I*''n'

5 PROPERTIES OF TIJE POSITIVE OPERATORS

According to (3)-(4) one

observes

that g, h are

non-concave For,instance,

this may be

motivated

by the

equalities

8t),: -

"ft)^

>

o

st),' sl,,- st)i: çlM¡; 'l >

o'

Therefore, theorem 1 implies

84L,9

lt,

4 L,,h,

ort K,

which are

of

course equivalent

with

51

o11

K

ul"-llù'+4Í

(5)

f,m¡lL-o-ol < L,l-l < + Mil,L,Q-ol, n:t,2,

If the

hypothesis

is

verified,

then

(5) furnishes

lim ll/ - L*fl :0 for everY Í e

CP'(K)

Fina11y, the fact

tn^t

çtz\(K) is densein C(K)

andllL*ll : l, n :

L,

2, .'.,

proves

our

theorem.

Another

consequence

of

theorem 1

is the

followi11g fepfesentation of

the

remainder-term

in the approximation by

means

of the

operators

L*:Cla, bl->Clø, bf, n:1,-2, ...'

Some

similar

ideas

were

exposed

by tte

present

author in

[4].

A-n operatot L: Clø, bl

-+

Cla, ål is called

strictl'y þos'itiue relative

to K, c. lø, bf, it|

Í=Cla,bf, Í>0,Í+0 on la,bl implies

LÍ > O on la,

bf,

> o on

Kr.

From the proof of the theorem 1

we

see

that

for such an,operator t,:Clø,b)

n Cla, ó]

which

is

moreover linear and preserves

the

linear functions one has

Lh-IL>0 on

KL

//Lr

: min 8i(ø, l'), :

max.

8/(ø'

Y)

' (r,y)=I< ' @'Y)- K

øll 6nyoll

(4)

7

+

Let us

denote

PROPERTIES OF THE POSITIVE OPERATORS 53

52 ALEXANDRU LUPA$

whenever h, is a convex function on lø, bl,

i.e.,

%1, %2,

ø, being arbitrary distinct points on lø,

b

F,oi Clø, bf +R be

defined as

F""U):Øil@o)-f(xo)

6

Then

F,"(h)

>

0

for any

convex

function

k

e Clø, b). An earlier result of t.

popovrcru

f10l

asserts

that

there exist three

distinct points (, from la, bl

iso

that F^(f) : F*,(er)1\r, 4r, ("i ll,

er(t)

:

¡2.

In this way

we have proved

TrrEoREM

3. If L:Clø, bl

-->

Clø, b) is

a. I'ineør, strictly þositiae oþø-

vator rel,atiue

to R, c. la, b),

and,

Leu

: eu,

k

: 0, l,

e¡(t)

:

¡i,

tken Lo eøch function

f e Clø, bl

corresþond.s

a

system

4r,

Er, l,ò

of

d,is- tinct þoints

from, fa, bl

suck thøt

(IJ)(*,) -

f@o)

:

l(Le,)(x¡)

- ",(xr)l . [{,, 1,, er; .f], xo = Kr

By [€r,

Er, E"; "f] we have denoted. the divid,ed. d.ifference of the second

order at the knots 4r, 4r,

Er.

It this way

we see

that the

remaind.er-

term, in the

approximtaion

by

means

of linear strictly-positive

operators rvhiclr preserve

the

linear functions, has

a

simþle from,

3.

The

behaviour

of

Bernstein's operators

on the

elass

of

non-eoneave funetions

of two

variables

Let us

denote

Kr: {(x,

-y)

=

R, I

x e

10,

ll, y - [0,

1]]

(6) Kr:{(x, }) =R¿lx Þ0, y >0, ø*y <

1}

b*,i(t)

:li)t' t, - t)"-¡

(7)

þ*,*,¡(x,

r) : (1)øl0)

*o

,'

(L

- * - y)il-k-i

Th" Bernstein operators

B*,,,,:

B(Kr)

->

B(K1), n, m: l, 2, ..., B": B(Kr) + B(K2), n: l, 2, ..., are

defined. respectively by

(8) (8,,*Í)(*, y):åå b,,¡(x)b,,,¡(y)f(+, k),

(x,

y) = K,,

n n-þ

(e) (a,Í)(x,r) :

Ð

D^Þ,,0,,(*,

Ð f l+, ;),

(x,

y) = K,.

TrrEoREM 4_.

If f e B(Kr)

'is

a

non-conca.ae

function

on

K1,

tken

for

eaery

(x, y) = K,

(8",*Í)(x, !)

>-

(Bn+r,^*-tl)@,y), n, m:1,2, ...

Proof. We

have

* ,1,

(8",*Í)(x,

"y)

: Ð

h:o i:0

Db*,*(x)

b*,n(y)

t(t -

ø)(1

- y) + y(r - x) *

: Ð Ðu,*,,a(x) b*n,,,ulLål#¡i)¡l*, ;l *

n tu+l

+ D Ð

u,*,, n(x)

b^*,,,U) ffi_u+)¡ (*, #) *

tt+1 n

+ Ð Ð

bn¡1,e(x) b,,+t,¿(!)

#iffir(T' ;) *

n+1 n+l

Ð Ð

b,+,,0(x)b*+,,n(y)

,.h. rf (+'+)

-.(r) (n-h*l)(tn-i*t) (nlt)(mt1)

'

-.(3) h(øc-itll

(4)

qik:

@+r)(*+t)'

dìP

,l!*'

: (+,

;),,1?t : (+, +)

aih t3) -

(T';)

(4t lh_l, r_tì, rro:( h , ,

I

ziþ':l-

m I \2¿+r

rn-frJ

D*(f) :

oll'ÍþÍlut)

+

"Í1) Íkllo))

+

otî\

fþnl\ +

"lît

ÍþÍî\ -

.f(zoo)

i, k: l, 2, ...,

n.

lxt'

I.

Xs, 2Çt, i

For

øo

e hl>0

K, let

* x(r - y) + ,rylf l*, ;):

(2\

dìn

(ntt)(mtt)

h¿

(ni|)(rnjr)

(5)

54 ALEXANDRU LUPA$

I

o PROPERTIES OF THE POSTTIVË OPERATORS 55

Since

A

similar result may be established-

fot

the sequence of operators whose

images

are

defined

in

(9).

THEOREM

5' For øn

ørbitrary

Í = B(Kr) uhick is

non-concøue

on K, (B*Í)(x, y) Þ (B,+tf)(*, y), (x, y) = K2, lL: l, 2, ....

Proof.

One introduces

the

numbers

^*¿(fl: ".-t¡(*'+)* "*¡( " ' ;)*#r(+' "t-]l-

"ÍL'\

+

"Í?)

+

olil

+ olî:1. i, h:0,

1, .

..,n +

r,

we write

D oo(Í)

: o,

D"e(r)

: # ¡ (*,

o)

*,

*_]_rr

(+, o) _ r ("*,

o)

h:1,2,,,.,n-fl

and similarly

f nll

n*l

D*(fl:4f

?n+ | (0,

; )*;?¡(,'+ -r

0,

rnll

where

for

instance we have

tacitly

assumed.

that

'i: l, 2, ...,

rn

+ |

Dm+t,,+r(/) :0

lor

'h

:0,

nllh

f l+';) :0, i:0, l, ".,

%,

and

D¿,*+t(n:+f[ /n+ |

I

1,

,, h)*;¡r(r,+)- r(r, ;u)

Aoo(,f)

:

Ao,,+r(.f)

- 0, ..

'

We have

(B*Í)(*' v) :

n n-þ

þnn,¿(x,y)t(l - x - y) *

tc

* nt(|' +) :

h

l, 2, .,.,

m,

Ð

þ:0

n

D

h:l

b

D

i:o

D

Dnt+l,'(,f)

:

t) + j-r(r= , t) - r(4-, t

+

"f^' " -

1 -r+' r(+' ;)þn+t,h,o(x, v) t

h: l, 2, ...,

n.

In the

same

time, fot i:0, l, ..,, %+1,

h

-0, 1, ..., n+l

"ll,\

,ÍI\ *

"Í?t zl'ì

+

":1\

,Íit + "lî)

zÍ?

:

zoto.

I1

f

:

I{1-t R is

non-concave on

its

domain, then

/: 0, 1, .,.,

rn

*

1\

(10) D,r(f)>o l'^-_'l \--0, l, .,., nll)

I

But

from

the

above eclualities and. taking

into

account (10)

(B*,*Í)(x, !) - (8,+r,*+r f)(x,

Y)

:

fl+1 m+l

=

D D

b,,¡t,n(x) b,,+r,n(y) DnoU)

2

o.

h:o 'i:0

#¡(0, ,")þ,*,,o,{x, y¡ ¡

*ä-

,Ð^'

"./(#' |)Þ-*,,n,a(x, v¡ ¡

i

þ^+t,*+r,o(x,

y)/(1,

o)

+

*Ð -. r¡(0, T)þ*+t,0,¿(x, v) t

+ É "f' --:--re, '- tl

þn+1,þ,a(x, 3t)

:

h:l i:0 n+r \1x n ) n n*l-h

: Ð D

Lo,n(f) !)nt,t,h,,(x,

y) I

(B*+t

f)@, y) *

h:r i:o

*1-l

+

DAon(,f) þn+t,o,n(x, Y) i:o

(6)

In

other words

fr

(8,Í)(*, !) - (B*+tÍ)(x, Y): Ð

But

/ = B(Kr),./

non-concave on

K2,

assüfes

the valid.ity of

the inequali- ties

Lou(Í)

> o, (uo::oo,t', ..',i +, -,)

Taking into

account

that

þn+t,h,r(x,

y) Þ 0, (x, y) = Kr, the proof

is complete.

Remørh.

Any

non-concave

function from C(Kr) or from Ç(Kr)

m7v

rc "iitãi-

appíoximatecl

by a

non-increasing sequence

of

polynomials.

4.

The Bernstein operators

anrl

(S)-convexity

I,et S:

llsnoll

i, h: l, 2, ',., ffi, be

a ttoubly-stochastic

matrix, i'e'

%%

s;o

)0,Dtro :fs,u: l, i, h:1, 2, "',

rn'

i:L h:l

I1 x:

(x1, Nz, .

'.' x*) e R. then

t]ne sckur-trønsfonn

of ø is the

poin

!:Sx:(yr,!2,...,!*)

where

fl

lt: Ðrs;nxn, i : l' 2,

'

"'

nt'

A

subset

D

from Ro

is

called an ød,missibl,e d,ornain ilL

it

verifies:

i) x:(xr, *r, .,.,

x^)

eD implies %n:(xng¡,

finp¡,

.",

tcn@r)eD,

rc being

an arbittaty

permutation

of {1, 2, '. ',

m}.

S

and

any point x e D, the

Schur-transform amples

of-such

admissible domains

in R2

a;re

bv

(6),

RowsKr [7] a function f :D +R, D

being an m

>

2, is õaited S-conuex

(in

tlte sense of

I.

Sckw)

if for every matrix S antl any point x e

D

f(sx)

<

f(r).

ll

PROPERTIES OF THE POSTTTVE OPERATORS 57

He notes that a

S-convex

function must be

symmetric

on its

domain.

A1so,

if f :D -rR has on D

continuous

partial

d.erivatives

of the first

ord.er,

then

a sufficient condition

for

S-convexity is

(1

l) (*, -

*¡)

ôf _ðf

ôx¡

ôni

Þ0onD If D is

open

then

(11)

is

also a necessary condition.

L

e m m

a The

Bernstein oþerator

Bn: B(Kr) -* B(K2)

þreseraes the symrnetry, that is

Í = B(K,), Í(*, y) : l(y, ,)

ALEXANDRU LUPAS 10

56

tt+l-þ

D

Le¡(Í) þ*+t,n,,(x, Y)

i:0

'irnþl,ies

(B"f)@, y) : (B,f)(y, x), (x, y) = K,,

Proof. From

å ti A;n:äïo', li)(";'):(i)1";

we get

(B*r)u,,) : þ_-80( ;o)

ro *,

t, - x -

vY,-r-,

r (+

:h$on,h,¿(x,

þ=

ùr(+, +): (B*fl(*,

y)

,)

where þa,p,¿

was

tlefined.

as in

(7).

Further we

show

that the

Schur-convexity remains

invariant

under

Bn. In the

case

of

one

variable

such preserving

linear operators were exposed

in [2]- [6], l8l. It

is

the

convexity-preserving

property for the

usual

(see

[8])

was used

in

statistics

by w.

wDcMürrLEn [15].

THEoREM

6.

Let

Í = B(Kr)

be

ø function uhick is

S-conaex

on Kr, Then B,f,

n

: l, 2,

. .

., a./

S-conaex

functions on Kr.

Prqof.

We find, ô22!

: "E -Ð' þn-th,i tr(+, +) - r(+, +)l

ôr

F5-o

i--¡ t

ry : " rÐ-"är

þn-,,h,¿ V

(+, +) - r (+, +)1.

+):

(7)

t2

13

we

get

súccesively

PROPERTIES OF THE POSITIVE OPERATORS 59

5B ALEXANDRU

LUPA$

On account'of

the

above lemma we shal1 use (11)' Put

D(n,,f, (*,

Y))

: *@ -,) (Y -'4)

and

LÍ(o,

x, v) : Í(*, y) - fþx +

(1

-

o')y' (1

-

e)%

I

ø.v)'

It is

easy

to

see that'

f : K, -+R is

S-convex

on K' iÎ

anð'

only if

Lf(a, x, y) >

O

for

every

(*, y) = K''

6¿

e l0' 1]' Fot n fixed- 1et us

denote

q,,*(x,

!) :

l" ;')(" ;:

o

o)

*o'o(t -

n

-')))"-þ-L (* -

v)(xo -z;

-

vh-zi)'

(*, Y) t K,

D(Bnf,(x, y)) :(x- r) p:. "-.fn

O,-',o,n(*,

y)Vl+' +)- f l+'+)]:

tçl D

þ:t

io,,*(*,y)V(ry +)-r

n

-¿ i,+r

n

)l *

w]

À:0

D f,

Q,,"0*,{*, rùV

(ry, +l - r (ry ¿+1

+

?L

t?l

þ-

2h-2i 2h-¿+l i

D

Dqo,'u(x,

y)LÍ

h:l i:o

2h-2i+l

t)

nn +

These functions have

the

properties

l+l

h toh oi+l

n¡za¡{x,l Y)Lf

G;fr,

2k

- i +2

tn1,

I

I

DD

h:o i:0 n

qn,o(x,

y) 2 0,

(x,

Y) = K,

(* - y)lþ,-t,rn-t¡(x, y) -

þ1'-1,i,2h-i(n'

y)) =

h'za(x' y¡

(; : o, l, ...,

h

- l, h: l, 2, " " t"-])

(rc

- y)lþ*-t,zh+t-i(*, y) - þn-r,i,2h-i*'(*' y)l:

qt'zna(x'

!)

(o

: r, l,

.

.., h, k :0, 1, 'l+ll

Therefore

(12) fr-L

(13) D(B*f, .) : D

lr:1

t"l

D

¿:0 q¿,n(')

' Lf h-2i h-¿+l

i.

h-zi-ll n

n

Now

the

S-convexity of

/

enables us

to

write

By

means

of the

summation-trick

h-2¿ h-i +l

i,

h-2¿

+l n

n

h: l, 2, ...,n - | ) " o, i : o, r, ...,1?]

n-l n-l-h

v+)

þ-7

P.

Ð--, ouo ¿itLt

-r- \- D

i:o (An,ro-n

*

Arn-¿,¡)

*

Combining these inequalities

with (12)-(13) we

conclude

with D(B*f, .) > 0 on K,

and

(11) finishes

the

proof.

+ l+1

h

Ð

(An,"u+r-o

¡ A'e¡r-t'i)

(8)

60 ÀLEXANDRU LUPAS

t4

t5 PROPERTIES OF THE POSITTVE OPERATORS 61

5. A

method

oi

positive interpolation

I.et Pr, Pr, ..., Pnbe the

successive vertices

of a

convex polygon

C'Cp¿, *itt i

sid.es.

If /: C, +R

then we

may

formulate

the

following

iitJpolttion problem, ,,to

fittd.

a linear operator L,-zi

B(C")

-'

B(C")

with the

properties

r) (L"-,Í)(Po) : Í(Po), k: t, 2, ...,

n,

2) (L^-rfl(x, y) is a polynomial of

degree

n - 2 in x

anð'

y'

3) if Í >

O

in C*

then

Ln-rf ) 0 on the

same

set"' A

method

for

constiucting such an interpolation

operator

is

as

follows:

Iet d'¿(x,

y):

:aitc*bni+cð, i:1,2, ..',

n', such

that dn@'y):0 is the

equa-

tion of the hyperplane

(PoPr+r),

i: l, 2, "', n, (P,P,*r):

(P"Pt)"

Putting

REFERENCES

lnn(x,

Y) : n

d¡(x d¿(x' v)

n' yn)

, Pn:

@0, yo),

h:1,2, ...,

n.

[1] Fa t Ky, Conaex sets and, lheir aþþlicatioøs. Argonne National Laboratory, 1959.

l2l \up aç, A., Sowe þroþertàes of the lineør þositiue oþerators (I). Mathematica (Ctuj) e-(3¿),

l,

77-83 (rs67).

l3l Lupa9, '6., Sorne þroþerties of tke lineør þositiue oþerøtors (II). Mathernatica (Cluj) s-(32i, 2, 2es-298 (1967).

[4]LupâÐ,A.,DieFolgederBet'aoþcratorcn'Dissertation,Stuttgattl9T2'

[5] Meyet-König, w., zeller,7(., Bernsteinsche Poten¿teihen. sl.udía Math., 19, B0- e4 (1e60).

16l Mäller, M. W., Aþþroximation du,rch lineare þositiueOþeratoren bei gemdsckter Nortn.

Habilitationsschrift, Stuttgart 1970'

[7] Ostrowski, ]\., Sur quelques aþþIication^s-cles foncti'ons conuetes et colxcaaes axl sens

ile I. Schur. J. Math. Putes Appl., 3l' 253-291 (1952)'

[g] p o p o vi ciu, T., Sur t'aþþroxinnation des fonct'ions conue*es d"ordre suþérieur. M.atlte- matica (Cluj) 10, 49-54 (1935)'

[9] popoviciu, T., Asuþ.rø demonstraliei teovemei lui Wei'evstrass cu ajut-orul'

!o_I!1'o11ry'212r

dà interpotøre. I,ucrärìle Sesiunii denerale $tiinfifice Acait. RPR., 1664-1667 (1950).

[10] popoviciu, T., Sur le reste d,øns aertaines Íor*y]?t li,néaires d,'øþþroúmation de

l'airalyse. Mathematica (Cluj) I (24)' l' 95-143 (1959)'

tlll Rockaf ellar, R. T., Conuex analysis. Princeton lJniv' Press, 1970'

ifZl S"haef er, lI. H., Toþologicø|, aeotor sþaces. Springer-Verlag, 1971'

[13] T e m p I e, W.8., Stieltjes integral, reþresentation of aonaex functions, Duke Math. J., 2r, 527-531 (1e54).

[14]

Volkov,

V. L, ConuergenaeoJ.sequences of .linear þosi,tiue oþeval'ov-s in tke sþaoe oI^"9!.- tinuous functio,ns of luo aøriøbles. (Russian) Dókl. Akad. Nauk 115, 17-19 (1957).

il5]

W e g m ü 11 e

r,

W., Ausgl,ei.ahnng durah Bcrnstein-Polynont'e.

Mitt.

Verein. Schweiz.

\¡ersich.-Math., 3G, 15-59 (1938).

i+

i:r

h,þ-l we have

l,u(P)

Þ

0

for

P:(x,!)=C^

1 for i:h 0 for j+k,

I^o(P¡)

:

Receivetl 10. xII. 1973.

and

if

we define

Lu-zi

B(C")

-' B(C")

as Institutul de aq'lautr d'in CI,uj

al Acailemiei Reþubl'iaii Soai,øIista Româ'nia

(14) L,-rÍ : Ln-zlc*; Í, .l : Ð/(P o)t,ol), n :3, 4,

' '

"

the pfoblem is

solved..

'we want to

use

this

operator

in the

following

approiimation

problem, which

is yet

unsolved:

let K : {(x' y) =

Rzlxz1'

+ r, * fÌ

and.

Bd,.K : {(r, !)

eF{zlx2

* y' : l}.

To find.,

if it is

possi- U1e,

a ,,âense" system oi distinct points P¡,, Prn, "',

Pn,

oî Bd'K'

such

that

lim L*-rlPy,

P2n,

...,

Pnn;

Í,

(rç,

!)7:Í@, y), (*, y) = Bd'K'

ør cp

whenever

f e C6)

Referințe

DOCUMENTE SIMILARE

We also compute the rates of convergence of these approximation operators by means of the first and second order modulus of continuity and the elements of the Lipschitz

By particularization, we obtain the convergence and the evaluation for the rate of convergence in term of the first modulus of smoothness for the Bernstein operators,

are positive linear operators on the space of locally integrable functions on I of polynomial growth as t → ∞, provided that n is sufficiently large.. The fact that the operators

By cornbining thcse 1,wo rnethocls ther-t¡ r'esLrlts a,n cstimir,te tbat intproves thc.. Estìmatcs for linear positive

We characterize the functions defined on a weighted space, which are uniformly approximated by the Post-Widder, Gamma, Weier- strass and Picard operators and we obtain the range of

Using a well-known method of construction for the pairs of linear positive op- erators, we give an estimate of the difference between the terms of these pairs.. denote the

Euler’s beta function, the beta first-kind transform, positive linear operators.... The beta first

We characterize the functions defined on a weighted space, which are uniformly approximated by a sequence of positive linear ope- rators and we obtain the range of the weights which