• Nu S-Au Găsit Rezultate

View of On a nonlinear integral inequality arising in the theory of differential equations

N/A
N/A
Protected

Academic year: 2022

Share "View of On a nonlinear integral inequality arising in the theory of differential equations"

Copied!
6
0
0

Text complet

(1)

REVUE D'ANALYSE NUT{ÉRIQUB ET DE THÉORIE DE L'APPROXII\{ATION Tome 25, N* 1-2, 1996, pp.173-183

ON A NONLINEAR INTEGRAL INEQUALITY ARISING IN THE THEORY OF DIFFERENTIAL EQUATIONS

B. G. PACHPATTE (Aurangabad)

l.INTRODUCTION

The following integral inequalify has played a very important role

in

the theory of differeritial equations.

THEOREM A. Let u and

f

be real-valued nonnegative continuous funcfions

definedþr

t>-0.

If

,'Q)<c2 +2

t

J

0

,f( ")u(

s)ds,

for all

t > Q u,here c 2 0 ¿s a constant, tlxen I

u(t)<c+l

0

f(

s)ds,

forallt>0.

As far as we know, this inequality was first considered by L. Ou-lang [7] in

1957 while studying the boundedness of the solutions of certain second order dif- ferential equations, lnl979 C. M. Dafermos [3] used the following variant of the above inequality to establish a different connection between stabilify and second law of thennodynamics,

TueoRpv B.

Assnne

that

the nonnegatíve

functions u

e

L*fO,sf

and

g e LllO,sf

satisfy the conditíon

t

y, (ù < M'y'

(0)

.

J lzoy2 (x)

+ 2Ng(x)y(')]e, r

e fo, s] ,

0

(2)

Nonlinear Inteeral Inequality 175

2 3

1',7 4 B.G. PacltPatte

yllere a, M, N are nonrtegative constanÍ;' Then

y

(") < Me*

v (o) + Àre* s( dir

results to the literafure.

fot

x,

y

e R* and

v) w)

0, v,here

k:

R3*->

R*

is a conl.irtuous futxcli.on.

If

for

x,

y

e R*, tlten

(2.2)

for

x,

y

e R*, where

(2.3)

(2.4)

s=0 l=0

for

m, n e No, l.hen

J

0

x)

(z r)

u2

(r, y) <

"' * zji 1t,", r)

u (s, r) z (s, t,u(s,L)) + g(s, t) u(s,r)] or

ci'

,

00

,(,, y)

< p (x, y) + q(x, 1,) exp

[{ i

t,",

r) k (s, t, p

(s,'l) o'0"),

Itts .f J'

p(r, y) =

c +

lJ

s(", ,) a

00

ry

q(x,

y) =

J J

f(",

t)

L(s,t, p(s,r))dr

cls ,

00

2. STÂTEN,IENT OF RESI]I,TS

hr this section we state our mainresults to be proved in this paper' In what follorvs we denote by R the set of real ttuntbers,

n* :

[0, oo) and N(): {0, 7, 2,

"'}

'

Forênyfunctionz(x,y)definedforx,¡'eÃ*'weclenotethepartialderivatives

!

-

,(r,u), 3 "(r,

y),

* 16,y)by

z,çx.

,,¡.

zr(x,

Ð.

zr(x, v) respectivelv' For

ô¡ ' '" ' Ôl

oYox

any fuirction zQn, n)defined for m, n e No, we define the operaton Atz(ttr,

n):

z(m+

l,

n)

-

z(m, rt), L;z(rn' n) -- z(rn, ß-

t) -

z(nt'

n)'

and LrarzQn'

n): L'l\'z(n'

n)]' (see'

[g]). For all

m> ,,

,n,' n e'No and'any functionP(ni defined for n e No we use the usual conventions

forx,leRn.

An interesting and useful discrete analogue of Theorem

l

is embodied in the

following theorem.

THEOREM 2. Let u(m,n),f(tn,n), gQrt,rt) l:e real-valued norutegativefunctions definedfor nx, n e No attd c a nonnegati.ve real conslanî' Let

H:Nfr

x

/ln +

À*

be a functíon v,hich salisf es the conditiott

(H) 0 < H(m,n,v)- H(tn,n,v') < M(nt,n,v')(v -

w),

for m,n e

No and

v ) w ) 0,

v,here

M

ís a real-valued nonnegaÍive fwtctí.otr definedfor tn,

n

r- No,

w >

0.

If

¡n-l n-l

(2.5)

u2Qn,n)

<

"2

* ztl lf(",r)ø(s, r)Ì/(s,í,u(s,r))

+ s(s,

t)u(s,t)),

Iz(")

n

=

o and

[I z(') =

t

s--tn

,l

s=nt

Our main result is given in the following theorern'

THEoREMLLetu(x,y),f(*,y),g(x,y)bereal-valuednowtegativecotttittuous functiohsdef.tredþrx,!cRnandcbeattonegativerealconstuttt,Let

L:R] -+

'R*

l:e a contiuous functíon v'ltich satisf es the condilion

(L)

0

< L(x,y,v) - L(',y,r'r') <

k('r:'

y'u')(v -

v') '

(2.6) u(rn,,) <

a(rn,n) +

b(m.,,,il [t

* ! fin t)u(s,,, ,("',))],

(3)

Nonlinear Integral Inequality r77 I /O

for

m, /? No, v'l1ere

(2.7)

B.G. Pacirpatte 4 5

for

m, /? No.

3. PROF OF THBORE]\{ 1

We first ¿ìssurlle that c is positive and define a function z(x'y)by

(3.1)

z(

Fronr (3.1) arrd

usi'g

the fact that u(*,

y)

= ,q"

r'l

'

it is easy to observe that

(3.2) ,,,,(r, !) < z\t;Q, ù116, t)r'(r,

v,

G(,, ,)) n ,(", ,)]'

Frour (3.2) ancl the facts that x,

y

e R.-, we observe that

z(x,1,)

> o, zr(x,y) > o, tr(r, y) > o

for

t,(x,

y)t

r(x, !)

Define

(3.s)

u(*,

v) = i i xy f(", t)L(s,t,.ft"¿)o'a"

00

Differentiating (3.5) and then using the fact that Ftr¡

=

< p(x,y)

+

v(x,y)

and the þpothesis (L) we observe that

,,,y(x,

!) = f(r, ùL(*,y, F6, y))

<

< f(r,y)L(r,y, p(x,y)

+

v(x,y))

=

(3.6) = f(r,t)ltçr,

y, p(x,

y)

+ v(x,

y)) - t(r,y, P(x,/))] *

+f

(x,

y)L(r,y,

p(x,

y))

<

< f(*,y)k(r,y, p(x,y))u(t' v)

+

f(,, v)L(',

v, p(x,

v)),

By keeping :r fixetf in (3.6) and seeting y

:

f and integrating with respect to I frorn }'to

y

ånd'then

keepingyfixed in

thé resulting inequality and

setting.r:

s and

integrating with respect to s from 0 to -x we obtain

(3.7)

From (3.7) we observe that

(3.8)

wlrere

qr(r,y) =

E

+ q(*,y) inwhiche>0

isanarbitrarysmallconstant' Siríoe

ør(x,l)

is positive and lnonotone nondecreasing for x,

y

e R*, from (3'8) we ob- nt-t n-l

a(rn,n)

=

c

+lf r(", r),

s=0 l=0 nt-l n-l

(2.8) t:(nt, n)

= I t

j=0

/(s,

r)H(s, t, a(s,

t)),

l=0

xy

x,

y) = ,' *

/J

i lr(",

t)u(s, t)L(s, t, u(s, r)) + s(ó-, r)a(s, r)]aro"''' 00

(3,4) F(ë, y) <

p(x,1,) +

].e.

,i a\ L( +4''l . ,[rt". t)\,,

y,

J,e, y))* g(', y)].

(3

3) urlf,+,,*) )- 'L' \""'/-\

By keeping x fixed in (3.3) and

setting¡t: t

and iritegrating with resPect to I from }'to

y

änd"then keepirìg

y

nxeO

i1

the resulting inequality arrcl setting

¡ :s

and

integrating with respect to s frotn 0 to -t we obtain

serve that

(3.e) ffi= t. i [tU,)k(s,t,p(",¿))ffi0'*'

Inequality (3.9) implies the estimate (see, l&'p.4921)

t'

u(r,

y) < q(x,ù . j'l ,rr,lk(s,t,p(s,

r))v(s, r)drds

00

u(*,

y) 3

q"(x,

ù . Ii 16,lk(s,t,p(",

r))v(s, r) drds,

00

,(*, y) t q,(x,r, *r[i

[rU, t)k(s,

421,, r1)oro"),

4^Fø¡)

xl'

J J

r(', lL(s,t,.Et""l¡0,*

00

(3. 1 0)

(4)

1?8 B.G. Pachpatte 6 7 Nonlinear lutegral Inequality 179

By letting

r

-+ 0 in (3.10) we have By using

(2)

in (4.3) we have

(4,4)

^r^t(J;þ1,ù) =lf l,",lu(,n,,,,J;(*,ù)

+

g(,n,,ùf^

Now keepingmfrxedin(4.4), set

¡¿:

/ and sum over

l: 0,1.2,

..,, tt.-l and then keeping ¡z fixed in the resulting inequality setm:

s

and sum over^r: 0,7,2, ,.,

tn-|,

to obtain the following (3

u)

t

(,, y) < q(x,r,*r[i

Ïr¡,lk(s,t,z(",

r))arc").

The desired inequality

in(2.2)

now follows by using (3.11) in (3.a) and tlie fact

r.---

tnat u(x,

y) < ,lt6.y)

.

If c is nonnegative, we carÐ/ out the above procedure with c

*

ao instead of c.

rvhere so > 0 is an arbitrary srnall constant, and subsequently pass to the

limit

as eo -> 0 to obtain (2.2).The proof is complete.

nrl n-t

(4.s)

,þn,n) < a(m,r)* ILf(t,, )n(,,t, ^14',,))

¡'=0 l=0

Define

m-l n-l

4. PROOF OF THBOREI\{ 2

We assume that c is positive and defìne a function z(m,n) by nt-l n-l

(4,6) v(m, n)

= I I ¡9, )n(s,,, J;6:))

s=0 l=0

z(m,n)

=

c2 +

rI I lf(t,t)r(t,lH(s,t,u(s,l)

+ s(s, t)u(s,t)f '

From (4.6) and using the fact that thesis

(fl

we observe that

lt(J",") . o(^,n) + v(m,n)

and tlre hypo- (4.1)

s=0 /=0

Fronr (4.1) and using the fact that u(m,

n) < \EØ,,,t)

we obserue that

(4.2) Arlrz(nt,"¡ < z,{rç,41f{,n,n)n(,n,r, J;þ",,ù)

+

g(,r,,ùf"

By using tlre fact

ttut

^þ(*,r)>0,A,p(tn¡t¡>0, ,[tç,ru 4 < FØ', * t,,t * ù,

(4,7)

A 2lrv(m, n) =

f

(tn, r) n(,n, ",

$þnfl)

<

< .f

(*,fln(,n,n,a(m.n)

+ v(nt.n))

- u(m,u,o(,n,r))f

+

+

f

þn, n) n þn, n, a(nt, n)) <

< -f (,n, n)

u

þn, n, a(tn, n))v (m, n) +

f

(tn, n) n (n r, n, a(m, n)) .

z(tn,

n) <

,,lzþn

+

l. n)

,

for tn, rz e N6,

it

is easy to observe that

Now keeping m ftxed in (4.7), set n

:

/ and sum over /

:

0, 1, 2, ...,

n-l

and then

keeping n fixed in the resulting inequality set rz

:

s and stllt over.s

:

0, l, 2, ...,

m-l

to

obtain the following

Lrz(m,n) m-l n-l

z(tn + 7,n) + z(m,n)

(4.8) v(nt,n) < b(nt,r)* I I /(", lM(s,t,a(s,)þ(s,1.

s=0 t=0

ArAt(FQ,1,t1)) From (4.8) rve observed that

(4.3)

m-l n-l

(4.e)

vþn,n) < b,(rn,r) * I I /(", lM(s,r,

rz(s, r))v(s,

r)

,

s=(l l=0

A,r\,p(tn,n)

wlrere br(m,n)

:

¿

I

b(m,n),

in

which e > 0 is an arbitrary small constant. Since br(m,n) is positive and monotone nondecreasing for tn,

n e

N,,, from (4.9) we observe that

z(tn

+7,n)

+ zQn, n)

(5)

180

(4.10) Define

Now keeping nt frxed in (a,13) and substituting n = t and then takirig the sum over

l:0,1,2,

.,.,

n-l

and using the fact that

Arw(m,0):

0, we have

Nonlinear Integral hequality 181

The desired inequality in (2.6) now follows by using (4.17) in (4.5) and then let-

ting

s -+ 0 in the resulting inequality and using the fact that u(rn,

n)

< zþn, n)

The proof of the case when c is nonnegative call be completed as mentioned in the proof of Theorem

l

and hence the proof is complete.

5. SOX{E APPLICATIONS

In this section, we present some applications of our results to obtain bounds on the solutions of certain differential and sum-difference equations. These appli- cations are given as examples,

Exatnple

L

As a first application we obtain a bound on the solution of the following partial differential equati orl

(5.1)

(z(x, y)2,(x,

y)), = '(r, )lr(r, !,

z(x,

y)) * s(*,y)],

with the given boundary conditions

(s,2)

z(x,o)

= @("), ,(0,y) =

Y(_y) ,

forx,yeR*,where

g:Rl -+ R, F:4 " R I 4,0, V:Àn -)

Rarecontinuous functions and O(0)

=

V(0) . It is easy to observe that proble¡r (5 . 1)-(5.2) is equiva- lent to the integral equation

(s,3)

wlrere

d(r,y) = O2(r)+V'(y) -O'(0) .If z(x,)isasolutionof

(5.1)-(5.2), then clearly it is also a solutiorr of the integral equation (5.3). We assume that

(s.4) la(,, y)l <

"2,

(s

5)

lr(.*,, .r,.

,(r.t,))l

<

fG, ùL(r,t,lz(x,

y)l) ,

wheref(x,

y) is

a nonnegative real-valued continuous

function

defined

for

x,y € À*,cisanonnegativerealconstant

and

L:Rl x R* I R* is acon- tinuous function

satisfying the condition (L)

in

Theorem.

l

From (5.3), (5.4) ancl (5.5) we observe that

B.G. Pachpatte

, L

n-l

fþ",1M(m,t,a(m,l),

t=0

I

9

94=, * f Ï r(", lM(s,t,a(s,t))-v(s'

¿) .

b,(m,n\ - ' L^

.Ltr

\''

- /-'-

\''

-' --\-) - '/ '/ å"(s, r) -u\"-)',/ S=0r=0

,)

=

1+

Ï"i fg,t)u(s,t,a(s,))#

s=0 l=0

Fonn (4,1

l)

and using (4,10) we observe that

(4.12) L2Ly(m,n)< f(m,n)M(m,n,a(m,n))wþn,n).

From the definition s¡y,(n,n) we observe that w(m,n)

<

u,(m,n

+ l),

for m, n e No. Using this fact in (4.12) we observe that

(4.13) -ttt:'þn'y). f(,n,n)tø(rn,r,a(nt,n)).

u,(nt, n)

^i

mrn)

(4.15)

u'(tn

*

1,

') t

w(tn, n r

* I fþn,t)M(tn,t,a(m,r))

(4

t4)

v'(m,n)

Frorn (4.14) we observe that

(4.16)

llsing (4 .16) in (4. I 0) we get

w(m,n)

< fl

I

* I f$,t)M(s,t,a(s,t))

n-l

t=0

xy

,'(', y) =

d(-r,

ù * zlJ 4", r¡lr'(" ,t,

z(s,r)) + s(s, r)]aras , 00

. ,2 n tr),

,(r,v)' ' "' . rl I[r(",t) ,(r,)t(r,t, z(s,r))+

g(s,

t) z(s,r)]ara'

00 Now keepingrtfrxed

in

(4.15) and letting

m:

s and substituting

s:0,1,2,

¡rz-1 successively, we have

m-l n-1

¡=0 /=0

(4,t1)

v(m,n)

< b"(tn,n\ll

I n

I f(s,t)u(s,t,a(s,t))

n-l n-l

.r=0 /=O

(6)

Nonlinear Integral Inequality r83

10 11

B.G. PachPatte 182

Now an application of Theorem 1 yields

where

(5 .7)

s=0 /=0

wlrere å, g: N'o

-,

R,

(s .B)

n-1

n-l

b1þn,

n) = > t /(s,

r)H(s, t, a1(s,

t)),

s=0 l=0

for m, n e No. Inequality (5.10) gives the bound ou the solutionz(nl, n) of equation (5.7) in tenns of the known functious'

In

conclutling this paper, we note that the inequalities established

in

this paper can be extenãed very easily to more than two independent variables. The

pråu..

fonnulations of thése inequalities is very close to that of given

in

Theo- l."rrr, 1 and 2 with suitable rnodificatious and heuce we do not discuss it here.

ry

qr(*,

y) = I

J

f(', t)L(s,t,p,(s,

r))arcs,

00

for x,

y e R*.

lnequality

(5'6)

gives.us the bound on the solution

z(x'y) of

fS

¡-(S

Zl iritenns of the known functions'

Example2'Asasecolrdapplication,weslrallobtainaboundontlresolution of the following sum-difTereuce equation

,2

(,n,

rr)

=

h(nt,

ù . |Ëiz(s, r)lr(s,

t' z(s'

t)) +

g("' r)] '

ar(m,n)

=

c

+ tlls(",r)1,

m-1n-l

r=0 /=0

REFERENC E S

('t'

(s.6) lr(r,y)l 3

pt(x,v)

+ q{x,v)'*p[ I

J

fi'' t)k(s't'p'(s'

r))ords

\o

o

xy

pír,y) = c* JI

00

"("

dtds,

)l

F:Nfr x

R

->

-R are functions such that

lh(,n,,r)l

<

"2 ,

1, V. Barbu, Dffirential Equatiotts (in Romanian), Ed Junime4 Iaçi' 1985'

2. H. Brêzis, Opérateure ,rl*ín ou, nlotlotones el sénigroupes tle conlracliotts ¿ans les é'tpaces de Hílb ert, North-Holand, Amsterdarn, 1 973

3

C' M. Dafennos, The seco'ntJ law of Therntotb'nantics and slabilíry' Arch Rat Ìr4ech Anal' 70 (19',79), 167-1',19.

4. S. S Dragomir, The Gronwall Type Lemmas anil Applicatiorrs, Motiografii Matenratice, univ Timiçoara 29, 1981 .

5. A, Haraux, Nonlinear Evolution Equations: Global behavior of solutions,Lectore Notes irl Math- etnatics, No. 841, Springer-Verlag, Berlin, New York' 1981'

6. S. N. Olekhnik, Bound"l.n"ri and unbounclerJness of solutiotts ol some Ð'stettls of ordinarv dilferen- tial equatíorts, Vestnik Moskov Univ Mat' 27 (19'72)'34-44'

7 . L. Ovlang, The boundedness of solutiorts of linear differential equatiotts y" + A(l)l'

:

0' shuxue Jinzhan 3(1951), 409''415 '

g. B. G. Pacbpatte, on son'rc integrotlffiretttial inequalities of tl'te wendorf 4'pe, J. Math Anal"

Appl. 73 (1980), 491-500.

g. B. G. Pachpatte, Discrete inequalities ín two t,ariables ancl their applicatiotts, Radovi lr4atematicki 6 (1990), 235-24',7 .

10. M. Tsutsumi and L Fukuncla, On solutiotts of the derh,atites ttonlittear Schrö¿inget'equation.

Exístenceonduniquenesslheoretn'FurikcialajEkvacioj,23(1980)'259.277

Received 1.04.1994 57. Shri ltrìketan Colon.Y

Aurangabad 431001 (Ilaharashtra) Indio

(s.e) lr(,r,n,r(nt,l)l' f('',')a('',",1"(*,")l)'

wheref(m,n)isareal-r,aluednomegativefunctiondefinedforn4,?€N0,cisa

nonnegative real constan

t

and H'.Nfr

x

tR*

+

Ãn is a function satisfyi'g the cou- dition (H) in Theorem 2, From (5'7), (5'8) and (5'9) we observe that

l,(,,,,,)12

<

"2 r-rjî[/(', r)l'1'' r)lø(s'

t'lz(s'r)l) +

ls("' t)l'("'

t)l]

s=0 f =0

Now an application of Theoretn 2 yields

^-1f n-r 'l

(s,10) lr(,n,n)l<

a1(rn,n)

\ + ð,(rrr.,')flll * ';äL t=o t f(s,t)M(s'r'a1(s'r))l'

J

for m, n € Na, where

Referințe

DOCUMENTE SIMILARE

The averaging theory is one of the most powerfrrl tools in approaching problems governed by differential equations, The goal of this note is to present a theoretical

iteralioe metltods, Intern. Chcn, Dong, On lhe conuergence of ct class of gcneralizcd Steffettsen's iteraliue prccedures dtrd eÍror analgsis, Inter'. E., On the

In casc lltc lirécìrc[-tìcrivaiive of the o¡rcratol salisfics a Lipschitz colrlition oul r.csulLs ,rt:rluce to thc oncs oblainccl b¡' F. l'ott'a irrchrrlcd in. l-4 I

For the quasioperations the interval arithmetic is not inclusion mono- tonic.. \Miss' Berlin ected with inversability of complex ervals) is the scope of the

In Section 2 we prove some extremal principles for nonlinear first order system of differential equations and in Section 3 we study some properties of the zeros of the components of

(1.1) These operators appear naturally in the theory of differential equations and it is important to establish when operators of this kind have properties (under some con- ditions

We further show that some invariants that have been associated to third or fourth order ordinary differential equations can be expressed in a geometrical way in terms of the

This class of nonlinear equations includes as special cases many of the continuous-time Riccati equations arising both in deterministic and stochastic linear quadratic (LQ) type