• Nu S-Au Găsit Rezultate

operator to analytic functions of reciprocal order

N/A
N/A
Protected

Academic year: 2022

Share "operator to analytic functions of reciprocal order"

Copied!
12
0
0

Text complet

(1)

DOI: 10.24193/subbmath.2020.2.03

Application of Ruscheweyh q-differential

operator to analytic functions of reciprocal order

Shahid Mahmood, Saima Mustafa and Imran Khan

Abstract. The core object of this paper is to define and study new class of analytic function using Ruscheweyhq-differential operator. We also investigate a number of useful properties such as inclusion relation, coefficient estimates, subordination result,for this newly subclass of analytic functions.

Mathematics Subject Classification (2010):30C45, 30C50.

Keywords:Analytic functions, Subordination, Functions with positive real part, Ruscheweyhq-differential operator, reciprocal order.

1. Introduction

Quantum calculus (q-calculus) is simply the study of classical calculus without the notion of limits. The study ofq-calculus attracted the researcher due to its appli- cations in various branches of mathematics and physics, see detail [8]. Jackson [10, 12]

was the first to give some application ofq-calculus and introduced theq-analogue of derivative and integral. Later on Aral and Gupta [5, 6, 7] defined the q-Baskakov Durrmeyer operator by usingq-beta function while the author’s in [2, 3, 4] discussed theq-generalization of complex operators known asq-Picard andq-Gauss-Weierstrass singular integral operators. Recently, Kanas and R˘aducanu [13] definedq-analogue of Ruscheweyh differential operator using the concepts of convolution and then stud- ied some of its properties. The application of this differential operator was further studied by Mohammed and Darus [1] and Mahmood and Sok´o l [14]. The aim of the current paper is to define a new class of analytic functions of reciprocal order involving q-differetial operator.

LetAbe the class of functions having the form f(z) =z+

X

n=2

anzn, (1.1)

(2)

which are analytic in the open unit disk U= {z∈C:|z|<1}. LetM(α) denote a subclass ofAconsisting of functions which satisfy the inequality

Rezf0(z)

f(z) < α (z∈U),

for someα(α >1). And letN(α) be the subclass ofAconsisting of functionsf which satisfy the inequality:

Re(zf0(z))0

f0(z) < α (z∈U),

for someα(α >1). These classes were studied by Owa et al. [16, 18]. Shams et al. [20]

have introduced thek-uniformly starlikeSD(k, α) andk-uniformly convexCD(k, α) of order α,for somek(k≥0) andα(0≤α <1). Using these ideas in above defined classes, Junichi et al. [17] introduced the following classes.

Definition 1.1. Letf ∈ A. Thenf is said to be in classMD(k, α) if it satisfies Rezf0(z)

f(z) < k

zf0(z) f(z) −1

+α (z∈U), for someα(α >1) andk(k≤0).

Definition 1.2. An analytic functionf of the form (1.1) belongs to the classN D(k, α), if and only if

Re(zf0(z))0 f0(z) < k

(zf0(z))0 f0(z) −1

+α (z∈U), for someα(α >1) andk(k≤0).

If f and g are analytic in U, we say that f is subordinate to g, written as f ≺ g or f(z) ≺ g(z), if there exists a Schwarz function w, which is analytic in U with w(0) = 0 and|w(z)|<1 such that f(z) =g(w(z)). Furthermore, if the functiong(z) is univalent inU,then we have the following equivalence holds, see [11, 15].

f(z)≺g(z) (z∈U) ⇐⇒ f(0) =g(0) and f(U)⊂g(U).

For two analytic functions f(z) =

P

n=1

anzn g(z) =

P

n=1

bnzn (z∈U), Fort∈Randq >0,q6= 1, the number [t, q] is defined in [14] as

[t, q] = 1−qt

1−q, [0, q] = 0.

For any non-negative integerntheq-number shift factorial is defined by [n, q]! = [1, q] [2, q] [3, q]· · ·[n, q], ([0, q]! = 1). We have lim

q→1[n, q] =n. Throughout in this paper we will assumeqto be fixed number between 0 and 1.

Theq-derivative operator orq-difference operator forf ∈ Ais defined as

qf(z) =f(qz)−f(z)

z(q−1) , z∈U.

(3)

It can easily be seen that forn∈N:={1,2,3, . . .} andz∈U

qzn= [n, q]zn−1, ∂q

( X

n=1

anzn )

=

X

n=1

[n, q]anzn−1. Theq-generalized Pochhammer symbol fort∈Randn∈Nis defined as

[t, q]n= [t, q] [t+ 1, q] [t+ 2, q]· · ·[t+n−1, q], and fort >0, letq-gamma function is defined as

Γq(t+ 1) = [t, q] Γq(t) and Γq(1) = 1.

Definition 1.3. [14] For a function f(z)∈ A, the Ruscheweyhq-differential operator is defined as

Dµqf(z) =φ(q, µ+ 1;z)∗f(z) =z+

X

n=2

Φn−1anzn, (z∈Uandµ >−1), (1.2) where

φ(q, µ+ 1;z) =z+

X

n=2

Φn−1zn, (1.3)

and

Φn−1= Γq(µ+n)

[n−1, q]!Γq(µ+ 1) = [µ+ 1, q]n−1

[n−1, q]! . (1.4)

From (1.2), it can be seen that

L0qf(z) =f(z) andL1qf(z) =z∂qf(z), and

Lmq f(z) = z∂qm zm−1f(z)

[m, q]! , (m∈N). lim

q→1φ(q, µ+ 1;z) = z (1−z)µ+1, and

lim

q→1Dµqf(z) =f(z)∗ z (1−z)µ+1.

This shows that in case of q →1, the Ruscheweyh q-differential operator reduces to the Ruscheweyh differential operatorDδ(f(z)) (see [19]). From (1.2) the following identity can easily be derived.

z∂Dµqf(z) =

1 + [µ, q]

qµ

Dµqf(z)−[µ, q]

qµ Dµqf(z). (1.5) Ifq→1, then

z Dµqf(z)0

= (1 +µ)Dµqf(z)−µDµqf(z).

Now using the Ruscheweyhq-differential operator, we define the following class.

(4)

Definition 1.4. Letf ∈ A. Thenf is in the classKDq(k, α, γ) if Re

1 + 1

γ

z∂qDµqf(z) Dµqf(z) −1

< k 1 γ

z∂qDµqf(z) Dµqf(z) −1

+α, for somek(k≤0),α(α >1) and for someγ∈C\ {0}.

We note thatLD02(1,1, α) =M(α) andLD01(1,1, α) =N(α),the classes introduced by Owa et al. [16, 18]. When we takeγ= 1,2,c= 1, anda= 1 the classKDq(k, α, γ) reduces to the classesMD(k, α) andN D(k, α) (see [17]). For 1< α <4/3 the classes M(α) andN(α) were investigated by Uralegaddi et al. [21].

2. Preliminary results

Lemma 2.1. [9]For a positive integert, we have σ

t

X

j=1

(σ)j−1

(j−1)! = (σ)t

(t−1)!. (2.1)

Proof. Consider σ

t

X

j=1

(σ)j−1 (j−1)!

= σ

1 +σ

1 +(σ)2

2! +(σ)3

3! +(σ)4

4! +· · ·+ (σ)t−1

(t−1)!

= σ(1 +σ)

1 +σ

2 +σ(σ+ 2)

2×3 +· · ·+σ(σ+ 2)· · ·(σ+t−2) 2× · · · ×(t−1)

= σ(1 +σ)(σ+ 2) 2

1 + σ

3 +· · ·+σ(σ+ 3)· · ·(σ+t−2) 3×4× · · · ×(t−1)

= σ(1 +σ)(σ+ 2) 2

(σ+ 3) 3

1 + σ

4 +· · ·+σ(σ+ 4)· · ·(σ+t−2) 4× · · · ×(t−1)

= σ(1 +σ)(σ+ 2) 2

(σ+ 3) 3

(σ+ 4) 4

1 + σ

5 +· · ·+ σ· · ·(σ+t−2) 5×6× · · · ×(t−1)

= σ(1 +σ)(σ+ 2) 2

(σ+ 3) 3

(σ+ 4) 4 · · ·

1 + σ

t−1

= σ(1 +σ)(σ+ 2) 2

(σ+ 3) 3

(σ+ 4) 4 · · ·

σ+ (t−1) t−1

= (σ)t (t−1)!.

(5)

3. Main results

With the help of the definition ofKDq(k, α, γ), we prove the following results.

Theorem 3.1. Iff(z)∈ KDq(k, α, γ), then f(z)∈ KDq

0,α−k 1−k, γ

.

Proof. Becausek≤0, we have Re

1 + 1

γ

z∂qDµqf(z) Dµqf(z) −1

< k 1 γ

z∂qDµqf(z) Dµqf(z) −1

+α,

≤ kRe 1

γ

z∂qDµqf(z) Dµqf(z) −1

+α−k, which implies that

(1−k)Re1 γ

z∂qDµqf(z) Dµqf(z) −1

< α−k.

After simplification, we obtain Re

1 + 1

γ

z∂qDµqf(z) Dµqf(z) −1

<α−k

1−k,(k≤0, α >1 and ). (3.1)

This completes the proof.

Theorem 3.2. Iff(z)∈ KDq(k, α, γ)and if f(z)has the form (1.1), then

|an| ≤ (σ)n−1

(n−1)!Φn−1, (3.2)

where

σ=2|γ|(α−1)

q(1−k) . (3.3)

Proof. Let us define a function p(z) =

(α−k)−(1−k)h

1 +γ1z∂qDµ

qf(z) Dµqf(z) −1i

α−1 . (3.4)

Thenp(z) is analytic inU, p(0) = 1 andRe{p(z)}>0 forz∈U. We can write

1 + 1 γ

z∂qDµqf(z) Dµqf(z) −1

= (α−k)−(α−1)p(z)

1−k (3.5)

If we takep(z) = 1 +

P

n=1

pnzn, then (3.5) can be written as z∂qDµqf(z)−Dµqf(z) =−γ(α−1)

1−k Dµqf(z)

X

n=1

pnzn

! . this implies that

" X

n=2

q[n−1] Φn−1anzn

#

=−γ(α−1) 1−k

X

n=1

Φn−1anzn

! X

n=1

pnzn

! .

(6)

Using Cauchy product

P

n=1

xn

·

P

n=1

yn

=

P

j=1 j

P

k=1

xkyk−j, we obtain

q[n−1] Φn−1anzn =−γ(α−1) 1−k

X

n=2

n−1

X

j=1

Φj−1ajpn−j

zn.

Comparing the coefficients ofnthterm on both sides, we obtain an = −γ(α−1)

q[n−1] Φn−1(1−k)

n−1

X

j=1

Φj−1ajpn−j. By taking absolute value and applying triangle inequality, we get

|an| ≤ |γ|(α−1) q[n−1] Φn−1(1−k)

n−1

X

j=1

Φj−1|aj| |pn−j|.

Applying the coefficient estimates|pn| ≤2 (n≥1) for Caratheodory functions [11], we obtain

|an| ≤ 2|γ|(α−1) q[n−1] Φn−1(1−k)

n−1

X

j=1

Φj−1|aj|

= σ

[n−1] Φn−1 n−1

X

j=1

ψj−1|aj|, (3.6)

whereσ= 2|γ|(α−1)/q(1−k). To prove (3.2) we apply mathematical induction. So forn= 2, we have from (3.6)

|a2| ≤ σ Φ1

= (σ)2−1

[2−1]!Φ2−1, (3.7)

which shows that (3.2) holds forn= 2. Forn= 3, we have from (3.6)

|a3| ≤ σ

[3−1] Φ3−1{1 + Φ1|a2|}, using (3.7), we have

|a3| ≤ σ

[2] Φ2(1 +σ) = (σ)3−1 [3−1] Φ3−1,

which shows that (3.2) holds for n= 3. Let us assume that (3.2) is true for n≤t, that is,

|at| ≤ (σ)t−1

[t−1]!Φt−1 j= 1,2, . . . , t. (3.8)

(7)

Using (3.6) and (3.8), we have

|at+1| ≤ σ tΦt

t

X

j=1

Φj−1|aj|

≤ σ

t t

X

j=1

ψj−1 (σ)j−1 [j−1]!Φj−1

= σ

t

t

X

j=1

(σ)j−1 [j−1]!. Applying (2.1), we have

|at+1| ≤ 1 tΦt

(σ)t

[t−1]!

= 1

Φt

(σ)t [t]! .

Consequently, using mathematical induction, we have proved that (3.2) holds true for

alln,n≥2. This completes the proof.

Theorem 3.3. If a functionf ∈ KDq(k, α, γ), then z∂qDµqf(z)

Dµqf(z) ≺1 + 2 (α1−1)−2 (α1−1)

1−z (z∈U), (3.9)

α1=α−k

1−k. (3.10)

Proof. Iff(z)∈ KDq(k, α, γ), then by (3.1) Re

1 + 1

γ

z∂qDµqf(z) Dµqf(z) −1

< α1. (3.11)

Then there exists a Schwarz functionw(z) such that α1−n

1 +γ1z∂qDµ

qf(z) Dµqf(z) −1o

α1−1 =1 +w(z)

1−w(z), (3.12)

and

Re

1 +w(z) 1−w(z)

>0, (z∈U).

Therefore, from (3.12), we obtain z∂qDµqf(z)

Dµqf(z) = 1 +γ(α1−1)

1−1 +w(z) 1−w(z)

. This gives

z∂qDµqf(z)

Dµqf(z) = 1 + 2γ(α1−1)−2γ(α1−1) 1−w(z)

(8)

and hence

z∂qDµqf(z)

Dµqf(z) ≺1 + 2γ(α1−1)−2γ(α1−1)

1−z (z∈U).

which was required in (3.9).

Theorem 3.4. If functionf ∈ KDq(k, α, γ), then we have 1−[1 + 2γ(α1−1)]r

1−r ≤Re

z∂qDµqf(z) Dµqf(z)

≤ 1 + [1 + 2γ(α1−1)]r

1 +r , (3.13)

for|z|=r <1 andα1 is defined by (3.10).

Proof. By the virtue of Theorem (3.3), let us take the functionφ(z) defined by φ(z) = 1 + 2γ(α1−1)−2γ(α1−1)

1−z (z∈U). Lettingz=re(0≤r <1),we see that

Reφ(z) = 1 + 2γ(α1−1) + 2γ(1−α1) (1−rcosθ) 1 +r2−2rcosθ . Let us define

ψ(t) = 1−rt

1 +r2−2rt (t= cosθ). Sinceψ0(t) = r 1−r2

(1 +r2−2rt)2 ≥0,becauser <1. Therefore we get 1 + 2γ(α1−1)−2γ(α1−1)

1−r ≤Reφ(z)≤1 + 2γ(α1−1)−2γ(α1−1) 1 +r . After simplification, we have

1−[1 + 2γ(α1−1)]r

1−r ≤Reφ(z)≤1 + [1 + 2γ(α1−1))]r

1 +r .

Since we note that z∂qDµqf(z)

Dµqf(z) ≺φ(z),(z∈U) by Theorem 3.3 andφ(z) is analytic

inU,we proved the inequality (3.13).

Theorem 3.5. Iff ∈ A satisfies

z∂qDµqf(z) Dµqf(z) −1

< (α−1)|γ|

(1−k) z∈U, (3.14)

for somek(k≤0),α(α >1) andγ∈C\ {0}. Thenf ∈ KDq(k, α, γ).

(9)

Proof.

z∂qDµqf(z) Dµqf(z) −1

<(α−1)|γ|

(1−k)

⇒ 1 γ

z∂qDµqf(z) Dµqf(z) −1

< α−1 1−k

⇒ (1−k) 1 γ

z∂qDµqf(z) Dµqf(z) −1

+ 1< α

⇒ 1 γ

z∂qDµqf(z) Dµqf(z) −1

+ 1< k 1 γ

z∂qDµqf(z) Dµqf(z) −1

⇒ Re

1 + 1 γ

z∂qDµqf(z) Dµqf(z) −1

+ 1< k 1 γ

z∂qDµqf(z) Dµqf(z) −1

⇒ f ∈ LDkb(a, c, β)

Corollary 3.6. Let f ∈ Abe of the form (1.1)and satisfies

P

n=2[n−1] Φn−1anzn−1 1 +P

n=2Φn−1anzn−1

< (α−1)|γ|

q(1−k) z∈U, (3.15) for somek(k≤0),β(β >1)and for someb∈C\ {0}. Thenf ∈ KDq(k, α, γ)..

Proof. We have

Dµqf(z) =z+

X

n=2

Φn−1anzn and by (1.5)

z∂Dµqf(z) =z+

X

n=2

[n] Φn−1anzn.

Therefore, (3.14) follows immediately (3.15).

Theorem 3.7. Letf ∈ Abe of the form (1.1)and satisfies

X

n=2

([n−1] +y)|Φn−1||an|< y z∈U, (3.16) for somek(k≤0),β(β >1)and for someb∈C\ {0} and where

y= (α−1)|γ|

q(1−k) >0.

Thenf ∈ KDq(k, α, γ).

(10)

Proof. We have

X

n=2

([n−1] +y)|Φn−1||an|< y

X

n=2

([n−1] +y)|Φn−1||an|< y−y

X

n=2

n−1||an|

⇒ 0< y−y

X

n=2

n−1||an|

⇒ 0< y−y

X

n=2

n−1||an||zn−1|

⇒ 0< y

1 +

X

n=2

Φn−1anzn−1

(3.17) We have

X

n=2

([n−1] +y)|Φn−1||an|< y

X

n=2

([n−1] +y)|Φn−1||an||zn−1|< y

X

n=2

[n−1]|Φn−1||an||zn−1|< y−y

X

n=2

n−1||an||zn−1|

X

n=2

[n−1] Φn−1anzn−1

< y

1 +

X

n=2

Φn−1anzn−1

P

n=2[n−1] Φn−1anzn−1 1 +P

n=2Φn−1anzn−1

< y,

because of (3.17). By (3.15) it followsf ∈ LDkb(a, c, β).

References

[1] Aldweby, H., Darus, M.,Some subordination results onq-analogue of Ruscheweyh dif- ferential operator,Abstr. Appl. Anal., Vol. 2014, Art. ID 958563, 6 pages.

[2] Anastassiu, G.A., Gal, S.G.,Geometric and approximation properties of some singular integrals in the unit disk,J. Inequal. Appl., Vol. 2006, Art. ID 17231, 19 pages.

[3] Anastassiu, G.A., Gal, S.G.,Geometric and approximation properties of generalized sin- gular integrals,J. Korean Math. Soc.,23(2006), no. 2, 425-443.

[4] Aral, A.,On the generalized Picard and Gauss Weierstrass singular integrals,J. Comput.

Anal. Appl.,8(2006), no. 3, 249-261.

[5] Aral, A., Gupta, V.,Onq-Baskakov type operators, Demonstr. Math.,42(2009), no. 1, 109-122.

(11)

[6] Aral, A., Gupta, V.,On the Durrmeyer type modification of theq-Baskakov type opera- tors,Nonlinear Anal. Theory, Methods and Appl.,72(2010), no. 3-4, 1171-1180.

[7] Aral, A., Gupta, V.,Generalized q-Baskakov operators,Math. Slovaca,61(2011), no. 4, 619-634.

[8] Aral, A., Gupta, V., Agarwal, R.P., Applications of q-Calculus in Operator Theory, Springer, New York, NY, USA, 2013.

[9] Arif, M., Mahmood, S., Sok´o l, J., Dziok, J.,New subclass of analytic functions in conical domain associated with a linear operator,Acta Math. Sci.,36B(2016), no. 3, 1-13.

[10] Jackson, F.H.,Onq-functions and a certain difference operator,Trans. Roy. Soc. Edin- burgh,46(1909), no. 2, 253-281.

[11] Goodman, A.W.,Univalent Functions, Vol. I, II, Polygonal Publishing House, Washing- ton, New Jersey, 1983.

[12] Jackson, F.H.,On q-definite integrals,Quart. J. Pure Appl. Math.,41(1910), 193-203.

[13] Kanas, S., Raducanu, D., Some class of analytic functions related to conic domains, Math. Slovaca,64(2014), no. 5, 1183-1196.

[14] Mahmmod, S., Sok´o l, J.,New subclass of analytic functions in conical domain associated with Ruscheweyhq-differential operator,J. Results Math.,71(2017), 1345-1357.

[15] Miller, S.S., Mocanu, P.T.,Differential Subordinations Theory and Applications, Marcel Decker Inc., New York, 2000.

[16] Nishiwaki, J., Owa, S.,Coefficient estimates for certain classes of analytic functions, J.

Inequal. Pure Appl. Math.,3(2002), 1-5.

[17] Nishiwaki, J., Owa, S.,Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comput.,187(2007), 350-355.

[18] Owa, S., Srivastava, H.M.,Some generalized convolution properties associated with cerain subclasses of analytic functions, J. Inequal. Pure Appl. Math.,3(2002), no. 3, 1-13.

[19] Ruscheweyh,St.,New criteria for univalent functions, Proc. Amer. Math. Soc.,49(1975), 109-115.

[20] Shams, S., Kulkarni, S.R., Jahangiri, J.M., Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci.,55(2004), 2959-2961.

[21] Uralegaddi, B.A., Ganigi, M.D., Sarangi, S.M.,Univalent functions with positive coeffi- cients, Tamkang J. Math.,25(1994), 225-230.

Shahid Mahmood Corresponding author

Department of Mechanical Engineering, Sarhad University of Science and

I.T. Landi Akhun Ahmad, Hayatabad Link. Ring Road, Peshawar, Pakistan e-mail:[email protected]

Saima Mustafa

Department of Statistics & Mathematics PMAS-Arid Agriculture University, Rawalpindi e-mail:[email protected]

(12)

Imran Khan

Department of Basic Sciences and Islamyat University of Engineering and Technology Peshawar, Pakistan

e-mail:[email protected]

Referințe

DOCUMENTE SIMILARE

The equations of type (r) have found applications in many fields, such as contror theory, physics, engineering and biology, therefore their numerical treatment

SELECTIONS WITH VALUES BERNSTEIN POLYNOMIALS.. ASSOCIATED TO THE EXTENSIOÑ

Popoviciu, ti., 'f'eorcnú de n'Letlie tli¡t ct¡taliza ¡ntientali¿å çilegìituralor ctt lcotia ínterpoldrii, Ed.. Dacia, Cluj,

In this paper we shall study two classes of holomorphic functions cones with positive real part. We recall some notions

This paper is concerned lvith the numerical evaruation of derivatives and principal values of integrals from analytical fu'ctions... The extrapolation process can be

interval and can be applied for example in the case of the integrand function having a singularity near the integration interval.. In the next two sections we

Sugawa, T., Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc.. Owa, S., Notes on new class for certain analytic functions, Advances

[5] El-Ashwah, R.M., Majorization properties for subclass of analytic p-valent functions defined by the generalized hypergeometric function, Tamsui..