• Nu S-Au Găsit Rezultate

View of On Fourier series

N/A
N/A
Protected

Academic year: 2022

Share "View of On Fourier series"

Copied!
5
0
0

Text complet

(1)

LB0

Berlin pp 3 -39 f4l Paydon, J. I,'. arrd Wa

Jormat,iotts, D:nke

Rccêvcd, 20. I. 1971,

N. NEGOESCi

Remarl¡.7.2.

If.A:C,e:1, ll.ll :l.l

and

a1-1, thenthepropo- sitions (ii) and (iii) of theorem 6.1 and

propositions

7.I are

WáU ána

plrzDoN's precisions

[4] of Worpitzky's

theorem.

(1ä)

g":

C,

with e:1,

llzll

-lxl f lyl

and

llrll: l, is a

commutative algebra. Theorem 6.1 shows

that, if

llo,ll

<i (n:2,3,...)

(the complex numbers ø,, beTong

of the

sqllare centred

at 0 with the

ver- tíces

at the

points

-¡ 1 4 and 'f 1) 4l , tn"r, the

r.alue

of

complex continued

fraction (7.1)

(ø^e

C)

belongs

to the set

defined

by the

inecluation

(7.4) lo, - xl + l% -! I < ]

tt

xl + lyl),

where z

: x ! iy

and

Øt: út]_

iþr.

For

instance,

if ør:2 + 3i, then

(7.4) shows Lhat

z

belongs

to

con-

vex hull of the points

| + t,,

2

+ +,i,

7

+

gi,,

2 +

8¿.

(iy) út: C, with e: l,

ll"ll

: rrr"* {lxl,

ly

l} and lllll :

1,

is

a comrnntative algebra. Then,

if

llø,,11"

I t":2, 3, ...)

(n,, r.rlns

a

sçluare

rvith the sides parallel to the

coordiua'ue axes

and

centred

at 0),

the

valtte of

continucd

tractiorr (7.I)

(a,, e

C)

are

in the set

defined

by

the inccluation

mzrx {l

u.r- xl, lP, -tl} <; max {lrl, lyl},

\r'lrere z

: x

l-

i1

ancl at

- i.t

-l- il3r.

MATIIEMATICA

-

RtrVUE D'ANAL,YSE

NUNTÉRIQUE

] : . ET DE THÉORIE DE L,APPROXIMATION

L'¡ïNALYSB NUIIÉRIQUE BT

L,A

'[I{ÉORIÐ ÐE

n 'APPROXIM.{TION Torne

5,

No2, tr976,

pp"

181-1BB

ON FOURIER SBRIES

:

G. P. NEVAI

(Bucìapest)

1. I,et us introduce the follou,ing notations.

I,eT

C2^

denote the Banach space

of

continuous reai-valued. functions

of

period 2æ provided

ivith the

usual

uniform norm and let Li" (l

S

I < oo) bc thc

Banach

space

of

real-valued

functions./ of

period

2n lor

r'vhich

l,fl" is

Lebesguc integrable over

,the

segment

l0, 2nl. I,et

Jt,

be a real

pararneter

and

let

A, and

V¡, be operators

C2n(2fi) defined

by the

formulas

(Lrf)(*) :fl*) -

f(x

*

h)

2t

krf)(*) -f(x)

-r f(x 2

+

h) .

Iret, further, R be a

natttaT

integer

and

let

anÏ; 8).,, (rå) :

,]l_tP, ll(Ln)'',f llr"- ç'r,¡

[1] F'a i t W y rn aln, A tlt¿oyen¿ of cotouergen,ce for lltc non-comn'¿túaliue frøclions. Journal of

r\ pproximatioll theor)', ií, 7+ 7 G (197 2) .

¡21 Ga¡rrirIf. G, et Gc¡bert,7,,4tgcbrc d,e Battach. UrriversitódeI,iège, Sétninaire d'Analyse ìIath(:rr-LLrtique et cl'Algèbre, pp. 1- 17 (1966 1967)

[3] \Vo r piT.zky, Untcrsu,cfunNg¿i!. ü.bei tlic Enttuichcluttg d,er À,Iomodyon,e¡t tnd, illonogert,en

Funhtion tltLrch [(ctt¿nl¡rüch ];yi.e¿lriclt Gltntnasitt.to trtul llealsclt'ulc. Jahresbericht,

l8>0)

' C( ) is a non-negative, linite constant clepending on the parameters lying in the brackets,

be

the R-th

Cz^(Lå) modulus

of

smoothness of the function

/. Finally,

let

denote the n-th partial sunr oI the

trigonom.etric

l'ourier

series

of

the function

/.

2.Let

"f e C"*

and R be a fixed uatrlrai

integer.

It is a

well known

inequality

due

to H.

I,ebesgue and

I).

Jackson

that*

Pgrrl)RDNCES

S,(x, .f) :

u,

ii ør

cos /t,x

-l

bu sin hx)

( i 865)

I l, II.S., 'l-hc conlinued fraction ûs a seqltence of linear trans-

llath Journal, 9, 360-1.t72 (1942).

Facullataa dc n¿alenaticã ;i mecanicd

Uniuersil,alea din I açi

R. S. Româniø

(2)

782

and therefore

that

is

(n,:7,2, ...). In

1941 s. M.

NrKor,sKrr [B]

showed

that

C(1)

: 1

is

the optimal value

of

c(l).

How does

c(R)

behave

for an

arbitrar5. R J

Thi! tuestion

uras open fo.r ?^lo_"g

time

and even

the

estimation

c(R) : :

o(.1) was

not

known

until

1971 when

the author [6]

and indepenàeátly qf._l¡im

v.,v. Zut< [11]

solved

this problem. Actually, the

best^ value of 9-(R) . can

be defined easily by the following

wa)¡.

Ilenoting by 1

the

ideutity

operator

let

us remark

that

ArfV¡:1 (An*V¡)À='l

¡f + v,Þ. (;) LIYr-o-' : t

Iret us

choose

now a trigonometric polynomial

H,,

of

degree

at nost

n such

that

llf - H"ll""^:

8,,(f)

rvhere

E"(f)

denotcs

the

measure

of

best approximation

in C", of f

by

trigonometric polyrror¡ials

of

degree

at most

r¿. Then rve obviously have s,,("f)

- Í:

s,,("f

- H,) -

("f

- H,) :

: s,(Af /) - s,(^f H*) +

+

v,,s,,

(Þ, ffi) Àfyf -'t-r u - H,)) - u - H,).

But

S,(Af

H,,)

:

Lf H,,

: Lf (H, - Í) -F LiÍ

and

thus

lls,,(A,f

ä,)

llc2*3

8,,(¡) +

cìR(-f

;

k)cr*

Let now

h

: n- " . B)' virtue of

some

result

due

to s.

TDRNSTETN.

[1]

and

w. RocosrNsr<r

[9]

we have for-every g-e Czn

llVd,(e)ll"r^ I Cllgll"r* (n: r, 2, '.

').

Therefore

n

llvss"(D

(f)A*

vf ---'(Í -

H,,))llc"n< c(2R

- r)E"(n

(n,

: t, 2,

. , .)

t+ h:0 nn

3 oN FoURIER sERlEs 183

Applying now the

Jackson theorem

E*(f) : of^*(Í ,:)",_l

(n

: r, 2,

. . .)

rve obtain

(1)

s,,(.f)

- l: s,(^:f) '; + ol.*7;ll L -a

tt tç2nJ

I tn: r, 2, ...,).

From this

we immediately get

the

following

lls,,(/)

-

Íllc,*

3 ln,tor " ,*v ;;)",_*, [..Í t:\"",]

@

:

r,2,. . .)

and. therefore C(R) 5 1 . Fo,

every

n it is

easy construct a'saw-tooth' function .f e C

r*

such

that

ils"(/) - f|",*= 1 to* "^oVt ;)",_+ ol..(/;

+)""_) and

thus C(R)::,.

3. By the way

rve have

got a very important

expression

(i) for

the deviatiorr

S,,(/) from the

functioÍL

Í

e

Cz'. This formula

has

a lot

of

applications, -soto"

of which give entirely

new results

for Fourier

series.

Its first

obvious conseçltlence

in the

following TrrEoREM L.

Let f

e C2,. Then

ll/ - s"(/)llc,^;]

o

if

and. only

if for

euery naturøI iøteger R

,"(S,(.f) ; ò)c,,,;*

0.

The

necessity follows

from the

inecluality

."(S"(,f) ;

8)c,*

S lls,(/) -.fll""* f ."(.f ;

à)c,,

and the

sufficiency

from

(1).

Let us turn io an another application of

(1).

c.

rr, HARDY an'd.

J. E. r,rTTr,EwooD

l2l have

shown-

that

if.

f

e

L{* and <o.(/; 8)r;:

: O(n-"1 where

æþ

) |

then

f :;f,

almost everywhere with

f1e I,ipu - - 1

and. therefore

P

I ,t'

lÍ(x) - S,(*, Í)l :Otlog n' *-"'T)

(n

:1, 2, .'.)

G. P, NÉVAI 2

ll/ - S"(rll"," <

C1n¡ log

na*

T

f

n

C2r

+

o

[." v,:)

czr

R-l

(3)

784 G, P, NËVÀI ON FOURIER SERIES

.(! - *)

llog (J, - x)l

4 5 185

uniformly

almost everywhere.

this result

can be sharpened. and generali- zed

with

the aid of the relation (1) as follows:

TIIIIoREM

2. Lct

"f

. Ll*

and

for

some

fixed. naturøl

integer

R

let

^*(.f

;

8)

rî*: O(n-"¡

(O

< " < R,

o.þ

)

1)

Then

uniforru.ly

in x

and

y

then

the Fourier

series.of

/

convefges_,lulfg11lv ton,ards

î. l,"t

us say

that the

functiou

/

satisfies

the

one-sided

Dini-Lip-

schitz

condition

if

crnifornr.ly almost eaeryuhere.

We ¡,vould

likc to

crnphasizc

that the

logarithrnic

factor is

absent in

this latter

estimation.

I,et

now

f eCrn

and

con(/; 8).1_:O(à) (ò--*0) for

sor11e

fixed

R.

rt

is a ciassical result

that in this

case

S,(/)

converges

uniformly

torvards

f lor

n

+

oo.

With the aid of (1)

one can find.

the exact value of

the speecl

of

convergence

of

S,,(/)

to /.

Nanr.ely, rve have

the

folloiving.

rFrÞìoRrtr'r

3. If f

e

C2" ancl

u,,*(./i 8)r.,_

: O(ò)

(8

-, 0) .fo,

sotne

fixed, natural

in.tegcr

R

tltett,

ll/ -

s,,(/)llez_

-

oilrog o,.(/

t :),^t

.

.*i!' j,)",_l

(n: \,2, ...)

ønd, th,is estitnate cannot be inr.þroued,.

We shall now

define

the

class

of

piecewise

R

monotonic functions.

The

functio.y

f

e C"^

ls said to be

piecewise

R (: 1,2, ... but

fixed) monotonic

if

there exists

a partition

p(/) :

-r :

xo

I xt I ... { x*:

n

of the

segment

l-n,n)

such

that the

expression

(a{f)(r)

does

not

change

hissignwheneverà ¿0, (x, x+

RS)

C (xr, xr+r)(i:0, 1,..., N-1).

Applying

(1) one can prove

the

following statement.

THDoRETu

4. Let R be ø fixed, natural

integer ø.nd,

let f

e

C2,

be

þ'ieceuise

R +

1 monotonic.

In

th,is cøse the logarithmic føctor

in-the

Lebes- gue-Jackson estinta.te cøn be omitted, thøt is

lt/ -

s"(/)il

",n

: r,

þ"[¡, ; )","1

(n

: r, 2,

. . .).

4.

Now we

turn to the

nicest

a cation of

the fo-rmul.a (1). \Me

shall

generalize

th

(more preci- sely Dini-I,ipschitz-Lebesgue)

con\¡er hat

if

f .

Cr,

and.

rf@)

_fu)t: r (

*;, ) u. _yl *o)

rvhere e(ð)

= 0 and

e(8)

*0 for I -' f0.

rnEoREM

5. If

.f e C2, satisfies the one-sid'ed,

Dini-Liþschitz

cond'ition

th,en the

Fourier

sãries of

f

conuerges

uniformly touød; f

ønd. llLoleouer ue Itaae the

follouing

estimøte :

(2)

f(x) - Í(v)

>-

-

ll/ - S"(rllc,n: o

where

*

denotes

the

convolution and,

lÍ@) -

s,,(x,

.f)l : o

þ

þr

"[;)

log

(x<u\

log

n (tr,

:

7,

2,

)

Í

:r+=d'+"G)1 (n: r,2, .,.)

of

course,

this

statement

is nofe

genefal

than the

Dini-I,ipschitz theorem,

but it can be

easily checked thaL

it is

more .general

than

the

Jordan-Ílirichlet

convergencg

test as

rvell.

This fact is

interesling-

by iiself

since

it is well klown that the Dini-I,ipschítz

and

the

Jordan-

Dirichlet

convergence theorems

are not

comparable.

To

prove

this

theorem

lgt us apply

(1.) with.

n : l',Pv virtue

of

.it

we

have'to

estimate

only S,(4"/) since/is

continuous. We have

by

the

Dirichlet

formula

r,,(o; ¡¡ : (L:Í)*D,,

is the n-th Dirichlet

kernel. llence

S,,14

",f)

:

*Dn

fr

+

7l

ÎE

,,

(4)

I86

and

by virtue of

(2) rve have

: l(^"/)

'*

lD,,| +o["(-1)]

^,rl s ilu-f@))*ur*D,t-tD,t)l +ol'(;)]

tr"r =

s +lr - f@l,'

11"

D* + D,l*'[' (;)]

where

T*D,(t) : O-(,

7 oN FoURIER

SERIES 187

Lct

f

e

Cz- ÀLip a

(0

<

o

<

1) and' Iet

^f be o{

rnono-

toni

s

lc-: c(f)

suctt' t'kat

tnìfi'ni¡åi' itij i

c"(*)

is

mon'oton'íc

in In this

cflsc ruc ka'ae

ll/ -

S,(flll czn

: O(n-o)

(n

: l' 2'

' ')

'I'his

follows immcdiately from a'heorem

5' Ulrfortunatelv' for

a

:

1

it is not truc. At ii';ä;"1ti-"' t'o'i]":;; ;; "'" o¡t"i" iiom

(4) the

following theorem'

Tr{EoREM

7. Let

.f

t Cr,O l"ip |

øtød' tet

f

be

of

cotlyex

tyþe tkat

is

1C:C(f)

suclt'

tn.l'Åt ¡"iltto'' ¡i*¡ * Cx' is

conaex' Then

ue

haue

il/ - s,(flt: ol+)

(n

-- r' 2' "

')

Let now Í t Lt*' It

is

T. E.

LrrrDr,wooD [3] that

ior

"

e

Ll*

such

that

a

classical

result of

G' H' HARDY ancL

a fixed poínl x

one can

find a

function

tf(xi

s)

-/(ø)':'(d-) 0-.ol

and. Sn(ø,

/)

diverges

lor n n co'-At the

same

time' however' s'

rzuMr

and c. suNoucur Liì ná"""ptoved that if f

e

Ll*

anð'

lÍu) - fþ)l :

"(t"r|' - utl þ'

z

n

x)

then

S,(ø,

f)--*Í(x) for n *

co'

The Izumi-So"oo"ttl''

theorem also

has a

one-sicled analogue:

TIfEoI{ÊlfB.LetÍ.LL^and'letxbetl'Lebesgueþointoftkefunc-

G. P. NÉVÀI

^

.lrì

ls,,(a,/)l s l(a^,f)xlD,l

I

+,Ë

I 1tl

[1

+1xlD,,l]:

.

From

this

we obtain Therefore

ls,(x,

î

(3) lS,,(x,

L*f )l :

O

[!",,t; t)rz,,T-!-* *"u* * "(;)]

since

it

can

be

easily computed

that

lo "(, - z) + o,Q)l : o (-r,

*"ul

Th.eorern

5

follows irnmediately

from

(3).

The condition (2)

can

be

generalized suppose

that for

sorne

R(: 2, 3,

. ' .)

^¡/

òJ

> -

I '(ò)iog 8l

ancl r,ve can

obtain by similar

arguments

that

(4) lt/

-_

s,(/)l c,n: ol.^-, (t

t

:)",,r .[;)]

(n

: r, 2,

.

..).

'I'he results

mentioned.

in this part

have also some applications

to

some well known results. R. sar,EM arrcl a. zYGMUND

f10] have proved

the following

10,

tken S*(*-' 'f)

'f(x\ for n*

æ'

localization

of the rniin relation

(1)

of

Theorem 5.

ä":ltr;*;oned

here were Publis-

by the following

waY.

We

can

tÐ>0)

tion

f. If

Í(v) -Í(z) > -

llog(e-1)l'(z - !)

(y

< z; Y, z -'x)

(5)

1BB G, P, NÊVÄI o

() MATITEMATICA

_

REVUE D,ANALYSE NUM.É'RIQUE

ET DE THÉORIE DE L'APPROXIMATION Ìì,B1TPRÞNCES

c sotntttalion des sêy.ies h,igonométriquas. Contptes

A conucrgett.ce critct,iott Jor Fottyier series, NIatln.

Sonte neu coltuergellce criteria for Fouriet, series,

Journ. B, (19S1),29g_30S. tc Fotl'vier attølysis (XI,\¡III), Tohoku l\'Iath.

[5] Névai, G' P', A note ott a G. I' Natanson's tlteorctn. (in Russian), .A.cta ],ra¡r Acac1.

iøterþolation and, Fourier vrnts (irr Russian), j4uergence test (in Russian), Acta ì{ath. Acacl.

of lhe tenn. ,in. case of a.þþroxi_

Doklad R sZ, (1941),-386:_389.

trigono Rcihett, nrath. Aruralelr int.ation, by þa,rti.al s Luu,s of I;otn,ie r se ri ¿s.

14 22.

,.2r.þeriodic funclion by I.inear rnctltuls oJ

ih Uceblrylr Zirvctlcrrii, Ácr. Mnt. t 1f O;.:¡,

L'ANALYSB

NUMERIQUE

ET LA

THEORIE

DE

L'APPROXIMATION

Tomc 5,

No

2,

1976,

pp. 189-192

COIUPLÉMBNTS REGAIìDANT I,A RAPIDITÉ DE

CONVERGBNCIi DES SERIBS

pâr

ANDREI NEY (Cluj-Napoca)

Matheutati,cal Institule of 'the Hungarian A cad.cmy of Sii.ences

Préliminaires. I,'accélération de

la

convergence d'une série

ayant

pour

but l'amélioration de l'approxirnation

c1e sa somtne est basée

sur

deux concepts :

1- la définition du fait qu'une

série conr¡erge pll1s

vite

que l'autre, et

2" la

procédttre

d'appliquer une tratrsformation au

termes d'tLne série convergente,

de telle

façon qtt'elle reste crlcore convergente

et

con-

serve la

somme

de la série

origirrelle,

-

d.e plus, 1a

suite

des sommes

partielles de

la

transformée converge

plus \¡ite à

cette sorlrue que la

suite

des sommes

partielles de la

série originelle,

D'après eRTNGSHETM,

l4l,

Ðu,,

eL 2uu sol1t deux séries

nt1-

nrériques convergentes

dont

les rcstes

du Íang n

soient

notés par

t,, respectivement p,,,

alors la série

Xu,, convergc

- Ilar définition -

plus

Received 20. Vf. 19?4.

vite

que

la

série

2u,

sr

on a lim & :

9.

¡t+æ /tt

On

démontre facilernent,

que

potlr

deux

séries convergentes

et

à

terrnes positifs, Ðu,,

et

2a,,, I'égaTitn

tffi;": 0

entraine l;égalité

:*7,:0.

On est tenté, parfois, d'étudier

setl1eme11t

le rapport

des termes correspondants

en vue da la

comparaison des rapidités de convergence de deirx séries

-

1nême atltres

qu'à

termes

positifs, tl l, t3] Or i1

est

su,ffisant

de

considérer 1'exelrplc classiqtte

I

des

sérirs > \+et > -L--

pour

constater qüe malgré

la

décroissance Plus

vite du

terme général de

la

deuxième série

- à zéro -

que

celui

de

la prernière, la

d'euxième série diverge, tandis que

la

première converge'

¿,*i

Referințe

DOCUMENTE SIMILARE

We use this estimation to obtain a Voronovskaya–type formula in- volving linear positive operators..

Micula, on et'en degree polvnontiul .rpline.litnuiotts rtÍt¡ ap¡tlica- líons to numerical solution of differential equation.r u,irh reiar(te¿ argunrcqt,

(lONYlìIìGlÌ\i;lì 1'lIIìolllìll. [)oncorningccluatiorr(1.1)ancltlreiter.ations(1.2)_arrcì11.3)l'ehar'e llrtnolturt

n4athc¡natica - Iìcr.. Bt'eckner', A priìtciplc oI corulensuliott ol'sittquhril.its for set-ualtted Iunctiotts, ùIathe- n.ìatica - Ilcr'. W.W.Btocl&lt;ncr,

fn this section r,ve apply Theorern I and Theorem 2 to absolute Borel sr.mmability.. Orlr result is the

Abstract' Irr this p]l)er we apply tlrc rnebod of v.. We also

The thermal properties (Differential Scanning Calorimetry), chemical bonding and microstructure (Fourier Transform Infra Red), morphology (Field Emission Scanning

This article presents a modeling problem of stationarity as the property of chronological series using the stochastic equation of a chronological series and the stochastic equation