• Nu S-Au Găsit Rezultate

View of Approximation by spline functions of the solution of a bilocal linear problem

N/A
N/A
Protected

Academic year: 2022

Share "View of Approximation by spline functions of the solution of a bilocal linear problem"

Copied!
7
0
0

Text complet

(1)

REVUE D'ANALYSE NUMÉRIQUE ET DE THIíORID DE L'APPROXII\,IATION Tome XXVI, No" l_2, 1997,

pp.

137_14g

APPROXIMATION BY SPLINE FL]NCTIONS OF THE SOLUTION OF A BILOCAL LINEAR PROBLEM

COSTICÄ MUSTÃTA

In the last years.the theory of spline fi.rnctions has become an important tool in the numerical solving of some

prôblr-.

for differentiut eqìations (see, for in_

stance,

|1,

L2J, [4]).

In this

paper

we

shall

define a

space

of

spline functions

of

degree 5

which can be used

to

approximate the

ùlution oi

a bilocal linear problem.

Let n

>

3 be a

nafiral

number and let

An:

-æ: t_t1a:

t0

1tt<

...

< tr: b 1tn+l: *

æ be a division of the real axis.

Denote by

^sr (4") the set of all fi.rnctions s : R

-+

R having the following properties:

loseC9(R).

Zo slne

gs, Ik: ltçt,

to),

k: I,2,...,

n.

3Oslroe

gs,

tlh*r€

93, I0: (t_t, to), Ir*t: ltr,

tr¡1).

THEoREM

l. If

s

e

S5(A,), then (1)

where Q)

s!)=\,t,ti+

3

l=0

Zooþ-t)1.,

r eR,

k=0

Zoo =o

k=0

and

fooro=o

k=0

Proof. Let s e Ss(A,).

If

t > b, then r(4)(t)

:

0 so that nn

0

= 5!Ð"oQ k=0 - lt)n- 5lX ot(t -rr)*

beca*e

f-=o

AMS Subj ect Classifi carion: 6 5D07, 6 5L05, 6 5L 1 0.

(2)

138

Consequently

foo =o and iooro=

o.

E

*=0 k=0

THEoREM 2. a)

If f

: R

+

R verífies the conditions

(3) f(o):

ur,

Í(b):

þr,

f"(tk):

xk,

k: 0,1,"',

n, then there exists a unique splinefunctionsre 'Sr(A) such that

(4) t.lo): ur, sfb) = Þ, s|(to): )'t, lc:0' r'"''

n'

b)

If

h: R -+ R verffies the conditions

(5)

h(a)

: ar,

h'(a)

=

þ2, h"(tk)

: ttt, k:

0,

1,..',

n,

then there exists a uníque splinefunction soe'Ss(^,,) such that

(6)

so(a) =

ar,

si@)

= Br,

sr"(t¡)

: lt¡, k: 0,

1,..., n.

proof.a) Using the representation (1) and taking into account conditions (4), we obüain the system

Ao*

Ara + Ara2

*

Arar

:

a.y,

n-l

Ao+

+ A2b2+ Atbi

+ Zooþ - rr)t =

Ft,

n

o=o

(7)

2Az+

6A3tj+r0iot(t¡ -

ro)t*

= ì,¡; i = W, no=on

Zot = 0; la¡,t¡, =

0

¡={)

,t=0

of z

*

5 equations with ¡¿ + 5 unknowns: As, A¡, A2,43, as, ctp.,., an'

The system (7) has aunique solution ifand only ifthe associated homogeneous system

-

(obtained for ø, = Ê r

:

0,

x*:0, Ic:0,

!,..., n) has only the trivial solution.

Suppose that

"

è Sr1A,)

veiifîer

the homogeneous conditions

(4)

(i,e,,

dr

= 9r

:

0, Ài'

:

0,

lc:

0, 1,..., n). Thenwe have

¡[,tnl1r)]'za, =

Io

r(4)(r).(s"'(r))'or = -l:,(Ð(,)'s"'(t)

=

-- -äl';,'"'{')'s"'(t)clt = -ä,,olu,' (')¿'

=

k'

= -i"o[s"(ro)- s"(ro-,)] =

o,

k=1

where

co:

s(s)1t¡ I

¡,

tc

=1r.

Approximation Splino Functions 139

It

follows that s(a)

:

0,

for

all t

ela,

bl' Since s e

9,

o1/o.md

ot

1.'.*.t

*j

s e

C4(R),

0 for all t e R, implying s" e

9r'

As

t"(Ð :

0'

k: o, 1r.,.,

that s"(

Final

e equali

all I e R, imPlYing that all that the homogeneous sYS

Assertion b) can be (1) verifies conditions (6).

tr

CoRoLlenv 3. Tltere exist the systems offunctions

g--

{so,s1,,Ss,

E,.",'Sr¡ c

S5(A')'

6ll:

(us,

\,

(Is,

(\,...,

(Jn)

c

S5(Ar)

v er ífy in g t he c on di ti o n s

so(a)

: l,

so(b)

:

o, so"(f¡)

: o' k=l,u'

sr(a) :

o,

s,(å) :

1,

rr"Qt): o' k=o,n'

So@)

:0,

s,,(å)

: o'

k

=o'n'' sk"(t) :

6or' lc'

i : o'''

uo(a)

: t, ui@) :

o, un"(t¡)

: o'

k

=o,n'

ur(a)

: o,

ul(a)

= t,]r"(l*) : o'

k

=0,;'

lJ*(a):0, Uo'(a):0' k=a'n;

Uk"U)

=

Eor'

le'i --

0'n'

If I h:

R

+

R verify the condítions of Theorem 2' then thefunctions s'and

s r, admit the rePresentations

(s) ,¡(r) = so(r)'¡(a)+

s1(r) '

f(b) +åt*tt'

'

f"(tt')' r

e

R'

n

(9)r¡,(¿)=uol)'h(a)+u(t)'tt'(o)nZouu(r)'1"(r¿)'reR'

Remarlc 1 . By corollary 3 itfollows that the set s5(4,,) ,r a (reaI) linear space oJ'clhnension n

r

3 and

I

and 6l'l are huo bases rn 'St(A')'

Soroe prupertier-ùtt

r

space S5(An)

will

l¡e piesented in rv'¿rt follows' Let

(t

- t*)*

=

Costicá Mustãþ

0 for t<tk t-h for t2t¡

2 3

(10)

w'*,)=

{t:[a't']

'o'o*Ï"'

,î!r' ."í^,),"r'r'

k =r'n

(3)

Approximation by Splino Functions 141 TuBoRBtvt 5. a)

If f e

W24(A,,) and sre Sr(4,) verífy conditions (4)

from

Theorem 2, then

5

(16)

(r7)

and prove that

ll"f' - r''ll, = ll'"' - ,'o'll ror a, s

e

s5(a,)

b)

If

h e

W|(L,)

and s,,e ,S5(4,,) verify conditions (6)

from

Theorem 2, then

ll'Í', - l',11, = ll',', - ,,o,ll; ror øu s

e

s,(a,)

Proof,In

order to prove (16), we use the identity

lþ'' - l'll,'"= f

[,ro'1,1

- ,Í)t'l]'

at + lu

["t"r'l -

¡{+)çt¡fz at +

+2f

lsØ)(tr

- #)r,l] ["Í,r'l - ¡ø)çt¡fat

r =

[o

[",0,(,) -,1',t,1] [,]',t'l- 7(o)1,¡]a' =

o

Indeed, integrating byparts, we find

r =

[,tol1,¡

-

,Í1)(r)] ,

[ ,'i

(,1

- r"'(,)]ll -

-f ["t0t,l-'Pt'l] ['i (') - r"'(t)fat

=

= -fc¿(s)[

s'i¿ (,0)

- f'(r,

)]

- [r',

(,0-,)

-

.f" (to-r)]

=

0,

k--r

where c*1s¡

:

s{sl1ir¡

-

s}Ðç¡, t e

I* k:

t,n . çWe trave used the fact that (r(4) -#4)Xa)

:

:6r+) _$+r) (ó):0.)

Therefore,

(18) ll'n, - lull"=ll',., -'t,ll; . ll't., - lull",

implying that inequality ( 1 6) holds.

Similarly, in the identity

ll,*,

_

,,rll,',=f

[,,.,(,)_,Í.)(,)]'

dt +

[b["Í-,i,1 _

¡Ø)çr¡f'dt

*

*z[ullÐç,1- ,Í')(')]

['Í'r{,) -

n{o)ç,¡)a,

we have (integrating by parts) r40

But

= l:lr,

Ccsticã Mrlstãla

4

(il) wl,¡(t,),=

{a

u prrro(,1,),s',(tt)

= .¡,,(t¡), k = o,;},

(t2) wl,¡,o(a,)'= {r . wî,t(A,,),s(ro) = f\o), s(,n) = ¡(ù},

(r3) wf,n,c@),={r . wî*Ø,),g(ro) =

h(to),

g,(,0) =

¿,(ro)}.

Then we have

Tmonepr 4. a)

If

s e

^Sr(A)

î

Wl¡,o(Lo), thu,

(t4) lþ"'ll,

=llr"'11,,

ror au g ewl,,,,(^,,).

b)

If

s e

^Sr(A,,)

ñ

Wl,o,"(A,), rhen

(15)

lþ,',11, =llr,',11,,

for au

g

ewl,,..(r,),

Proof, We have

= [ulrØ)ç, -,(+)1r¡]4,

=

o)(

ï

a,

- !bl,te)ç,¡]'a, - z[b,(+)çt[rr(Ðçl-

,(+)1r¡]or

o =

llr(a -,.,11;

t)

ll J^,f,llr,o)(,) -,(o)(,)]0, =

"(o)0)[ s,,,(t)

_,,,,(,)]l:

_

-J:',oU,t=r,,,(r) -

s,,,(r)]or

=

-l:,{s)1r¡1s,,,(r)

-,,,,0)]0,

=

=

-Zi,=,ff,'('){,¡¡r"'(r) - s"'(r)]dr

=

= -Xi=, colr"

(ro)

-

"" þo)

- (s,'þo-r) -

s,,(ro_,))]

=

o, where

ct = ,(s)(t)lro,,r:1,2,

..,, n.

Ir roflows

llr,,,ll,

-lþ,,,11; > 0, which is equivalent to (ra).

Inequalities (l 5) can be proved by a similar argument.

E

(4)

Approximation by Spline Functions 143

142 Costicã Mustãþ

II"u'

- o"ll" =lI".,' -'1,,

Il,

.

II'f,,

-

o''11,"

6 'l

implying that

(*)

From this equality it follows (17).

tr

CoRor-reny 6.

Ifl h.

Wl

(A)

and sn rå €

^S5(^,) verify conditions (4) and (6)from Theorem 2, then

(1e)

(20)

(2t)

(22) (23) (24)

The Cauchy problems have unique solutions

¡, !2,

fespectively (see [3], Theorem 5.15, p, 263), and the function

Qs)

vQ)

=

vt4)

+\#vr(r) with

vzþ)

+ 0, t efa,bl,

is the solution of the problem (D) (see [3]).

Applying Theorom 2b) to the solutions !1,

!2

of the problems

(Ç), (C), it

follows that there exist the functions ty,, sy,e ,Sr(4,) such that

snr(a)

= a,

s'r, (n)

= 0,

s"r,

(tr) =

y",

(t¡), k =

0,n,

(**)

,r',rço¡

= o, ,;r,r(o) = r, st, (tù = y'i (tk), ¡ = o¡'

We call the function s sy,, sy,spline solutions in ^Sr(Â,,) of the problems (C, ), (C2), and the function

(26) ,r(r) = ,n(r)+i# ,r,(t),

s,,,(u)

+ 0, t elo,

bl,

is called a spline solutíon in S5(4,,) of the problem (D)' Tgeonnu 7. Consider theProblem

(c)

Y"

:

P(t)Y

+ q(t), t e'la,

b) Y(a)

= ú, l'(a):

Y,

where

p(t)>

0, L

efa,

bl and

p,

q are continuous on la,

bl'

If

y e

\flQt,¡

is the exacÍ solulion of

(Q

and sre ,S5(4,,) is its spline solution (cf. Theorem 2b)), thenwe have

(zi) llr"-''; ll- = úllo,ll"'

llr(')llr' wherell¡,ll =

rno*{t¿

- tk-r,k ='u]1'

Proof, We have

l'(t¡) -c,

(tr) = o,

i

= o,n

so that, by Rolle's theorem, there exist t!t)

e(t,,t,*r), i=)li

such that

.u"'

(,Ít)) -'";, ('Ítl; = o, i = o;-

1'

Applying again ttolle's theorem, it follows the existence

of

4(')

'(t(t),

+f1ì),

i -,

0,n

¿.such

that

yþi

(,f))-

"!o(tf

Ð

) = o, ¡

=l,n -i.

n = [:lJ^)1,¡- "[a)1'l] [#)t'l-

¿{a)1r)]d/

=

0,

llr"'ll,

=

lþf'll; +llrt'r - #'ll;,

lþ"'ll;

=

ll'f,,ll; *

lþr'r

- "f.,ll;, ll#'ll,

=llr"'11,,

ll'f"ll, .llr"ll,, llr"' -:i"ll

= llr"'11,,

lll"-#'ll,=ll,"'ll,

Proof,, Equalities (19) and (20)

follow

from (18) and

(*) for s: 0.

The

remaining inequalities follow from (19) and (20).

tr

Applícation Consider the bilocal linear problem

(D) y" : p(t).

y +

q(t),

t

ela,

bl,

y(a):

a, y(b) = B.

If

p,

q are continuous functions on [a, b) and p(t) > 0, t

e

la, b), then the problem (D) has a unique solutiony (see [3], Theorem 10.1, p. 519),

Consid er the Cauchy problems

(Ct) y" : p(t)y + q(t),

t

ela,

bf,

y(a) : a, y'(a):0,

çCr.)

!" : p(t)y, I ela,

b),

y(a) :

o,

y'(a): l.

(5)

144 Costicã Mustãþ T'he inequalities

l,,rÌ

_ d')l <

ziln,ll .,a

lr{iì _ r(,)l< 3il^,ll hold for ¡ = O,n

-

Zand I = 0,n

l,respectively,

, ,Lo. every t elu, ó]

there

is an index

io

e {0, 1,,,.,

n_l

}

such that

f -';:'l = 4l¡,ll

so that, taking into accounr (24),wehave

Approximation by Spline Functions

RemarlcL. From the proof of Corollary

I

ítfollows that the ínequalily

llr'-"',ll* = Jz(o - o)llt,,ll''' llrt"ll,

I

9 145

(2e) holds, too.

The approximative determination of thevalues of the spline solution srof the problem (D) on thenodes of the dívision An

First observe that the exact soltrtion

/

W24(^,) of the problem (D) and its 1.u,,,(r)

- ",,;

(,)l =

lfi {r.,f,) -

,Í.){,))0,,1

=

,ll',,,, o,l'''

llr,¡r,,

u,1

-,r'r

]'a,1"' .

<

Jli4lt- ll:l,,rr, - ,yt1,¡l'o,l'''

,

< Jr .ll¡,11"' llr,"ll,,

Similarþ, for

every

t ela, ól

there existToe

{0,

1,..,,

n _ l)

such that

Pl =

ll¿,,iI, implying

lt"(,) - ,", t,l

=

llg 1r,,,(u)- (r)0,]l

=

= llr"'-''j, ll-

llo,,ll,

It follows that inequality (27) holds.

tr

coRotrenv

8.

If

y e

wf(A,)

is the exacÍ sorution of the probrem

(e,

then

(28) ll, -'rll.. <

J-z(r'

--o)'ll^,,11',

llr,',11, Proof. For every t e la, b)we have

1,,(r)

- ",(,)l -

llJ, Al -

s,, (u))aul

= ,, - o)

ll/,-",,11*

and

lt'(t) - "',

(,)l

=llJr'(u) - ,,,, ("ùu"l< þ -o)

.

lir,,-,,,

ll-,

From these inequalities and from (20) we obtain (2g).

tr

spline solution s, e

^Sr(Â,) given by (26)

veriff lr(,) -,,(,)l =

lr,t,l

* \#

yz(t)

-,,,(¿) - B-s tr,(h)

(å) sy,(

< þ,(,) -,,(r)l

+

l=W yzl) -#,,,,,,1

""ulTïlr','tåf';iHär?'

and rv' are determined bv the conditions ('t't;'

p _ yt(b)

_

p

-

r,, (å)

+

o(lla,ll,,,),

yr(b) tr,(b)

showing that

llv(4

-',(,)ll

=

r(llo.ll"')

a) The approximatíve determínation of the solutíon sr, on the nodes of the divisíon Ln

Represenúation (9)

yields

n

-

"r(r) =

"oU).

" *

oI-

ur\). y"r(tt)

=

, = uo(t)''*fuo(t)lr(tt). y(tt) *

q4o)1.

vr:: sr,(t), i=0,n,

e¡:

: !tçt) - sr,(tr),

i = 0,n, one obtains the system

Letting

n

'r,(t,) =

us(t,)u

+luo(t,)ln(rùko +

v¡) +

q(,ù)=

k=0

=

us(t¡)a

+fuo(t,¡lt(,*)uo * q!o)l+ o(lln,ll'/'),

k=0

i =

0,n.

(6)

146 Costicã Mustãþ 10 11 Approximation by Spline Functions 147 The approximative values of the spline solutionsr, on the nodes of a, are the

solutions v* of the linear system

v,

=

uo(r,)a

*lu

oþ,)lp(to)vt +

q(to)f,

i =0,n.

k=0

b)

The approxímatíve determinat

n

of the soluÍion su on the nodes of a,, Using again representation (9), one

obtains

'v2

trr(t) =

ut(t)

+ lu¡(t)' y"z(tt)

=

and have the exact solutions

!t

(

I

2

I

4

e2t + e-2t

lz (') l"'' -

u-''1'

Forn:5,

let

k=0 and

À, :

:

{/o

:

0,

tt:

0.2, t2= 0.4,

lr:

0.6,

Í.0:

0.8,1s

:

1}.

Using representation (1), one obtains Table

I

for the coefficients of sr,

n sy,

= ',t(t) + luoQ). p(tù. yr(t*).

Table

I

k=0 sy"

0 1

0 0.66',t8202118 0.125',t524863 0.01800170745 -0.17'10186129 0.780465 1 905 -7.970643804 1.163443033 sy,

1

0 2 0.1576268148 0.8446081893 -0.6853940844 -0.601482581 1

3,020199906 -5:t77416684 3.139485253

tt=5

Ao A1 A2 A3

A1

a2 tl3 44 As

Letting

wi:=sy2þ), ¡=o,fl,

:=

y2(t¡)

- trr(t), i =

o,n, it follows thatw,are the solutions of the system

w,

:

ur(t,)

* Tp

o þ,) p(t o)* o+ o(lla,, ll',' ).

t=0

Therefore, the approximative values ofsr,(t) can be obtained from the linear system

(30) w,=ur(t,)*fuoQ,)pþ)'*0, i=0,n.

/<=0

The approximative values of the spline solution s, e

^s5(Â,,) on the nodes of the division Anare given by

(31) ,r(r¡) = ,, -wn *4w,, i = oi.

A numerícal example. The problem

(D) y": 4y,

/ e [0,

l]

y(0): t, y(7):

ea

has the exact soluti on y

:

"-zt.

The associated Cauchy problems are

7Cr)

f" :4y,

t e [0, 1]

/(0): l, y'(0):0

çCr)

/' :4y,

t e [0,

l]

l0):0, y(0):

I

For the values

ofs,

on the nodes

ofÂr,

one uses

r"(/,)

= sr,

(r,)+ ,r,(t,),;

= oJ.

Table2 contains the values sy(t), i = Q,J, and the errors

Eí:W)-sr(l)|,

i =0,5.

Table 2

Et

0 0.538',1267.10-3 0.t2835s14.rc-'?

0.21215541,rc-1 0,235291('.101

0.E.10-t

"r(',) I 0.6708s$',t',t21 0.4s0612s215 0.3033 15766 0.2t)4249434

0.1 35335284

0 0.2 0.4 0.ó 0.8 1

(7)

148 Costicã Mustäþ l2 REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'API'ROXIMATION Tome XXVI, Nß 1_2, 1997,

pp.

149_163

II.EFERENCES

1. P. Blaga and G. Micula" Polynoníal natural spline of even degree, Stuclia Univ. "Babeç- Bolyai", Mathematica 38, 2 (1993),3140.

2. P. Blaga, R. Gorenflo and G. Micul4 Evar degree spline teclmiquefor numerical solution oJ delay differential equations, Froie Univorsität Borlin, Preprint No. A-15 (1996), Sorie A-Mathernatik.

3. R. L. Btuden and T. Douglas Fafuæ, Nunøìcal Analysis, Third Blition, PWS-KENT Publiúing Company, Boston, 1985,

4.

G. Micuta, P. Blaga and M. Micula, On even degree polyomíal splinefunctions with applica- tíons to numerical solution of diffirentiøl equations with retarded argument, Technischo Hochschule Darmstadt, Preprint No. 1771, Fachbereich Matheinatik (1995).

ON p-DERIVATIVE-INTERPOLATING SPLINE FLINCTIONS

RADU MUSTÃTA

Re,coived May 15,

1996

"Tiberiu Popoviciu" Instífiüe olNumericøl Analysß P.O. Box 68

J400 Cluj-Napoca,

I

Rotnania

Following the

idgas frgm [2] and [3], \ile define thep-derivative-interpolating spline functions which can be used to approximate

thisolution

of a difierential equation of orderp (

p

e N,

p>

I ) with modified argument, Forp

: I

one obtains the spline functions considered in [2] and [3].

Let

An:-co=/-l ( ú=t0 (/t <...1tr=b<tn*¡=-+ø

be a partition of an interval

la,bf c

R.

DEFINITION

I.For n) l,p ) l,m22,m > p

givennaturalnumbers such that

m+ p < n+2,afunction

s:lR

->

R satisfyingtheconditi.ons

1)

s

e

,z'n*t-z(R),

I

Z)

sl4e

ez,n*p_1,

1r =

ltt _r,tk),

k =

1,2,. . . , n, and

3)

s

lr

lt,,

slr"., € Qn+p_t,Io

= (t¡,to),Io+t = ft*tn*t)

ís called a spline function of degree 2m

* p - L

Here g, denotes the set of

all

polynomials of degree qt most r.

The set of all spli'e flrnctions of degree 2m + p

- l

is denoted

by

S r,n* o_r(L,) . Remark 1. Forp

:

1 one obtains the set

sr,

(Â") of natural polynomial spline functions of even degree 2m considered in [2] and [5],

The following representration theorem

will

imply trrat the set ,sr,*r_, (Â,,

)

is

an(n+

p

+

l)-dimensional subspace

of Cr^ro-r(R).

THnoRBtr¿ 2. Every element

r

sz"*p-r(a,,)

admits the representaÍion

m+p-l

n

(r) '(t) = I *ZqQ -,ù31'*o-',

j=0 È=0

AMS Subject Classification: 65D07, 6SLO1

Referințe

DOCUMENTE SIMILARE

In the present note we study an approximate method of solving boundary value problems for delay integro-differential equations based on approximation of the solution by cubic

In this paper existence, uniqueness results for the solution of some weakly singular linear Volterra and Volterra-Fredholm integral equations are given.. For these equations,

In this paper is presented a bicubic spline collocation method for the numerical approximation of the solution of Dirichlet problem for the Poisson’s equation.. The

So, wide classes of stochastic orderings, univariate or bivariate, discrete or continuous, of (increasing) convex type have been introduced in order to compare random

In this case, Beyn [1] shows that the phase portrait of the dynamical system (1) near ¯ C is reproduced correctly by an one-step numerical method and, in particular, the stable

nonlinear reaction-diffusion, positive solution, conserved integral, bifurcation, variational formulation, Lagrange multiplier, finite elements method.. Popoviciu” Institute

Micul4 Gh., Spiinefuutctions of higlter degree of approxíntatíon þr solutions olsystent of dtf.fer- entíal eqiatior¡s, Stuclia Univ. polynonial spline approxinatíott

Lorentz, r\cadcmicplc,ss tSiÍì, cs of scrtticottltnuous fLtttctiorr.s,