• Nu S-Au Găsit Rezultate

View of High order approximation theory for Banach space valued functions

N/A
N/A
Protected

Academic year: 2022

Share "View of High order approximation theory for Banach space valued functions"

Copied!
18
0
0

Text complet

(1)

J. Numer. Anal. Approx. Theory, vol. 46 (2017) no. 2, pp. 113–130 ictp.acad.ro/jnaat

HIGH ORDER APPROXIMATION THEORY FOR BANACH SPACE VALUED FUNCTIONS

GEORGE A. ANASTASSIOU

Abstract. Here we study quantitatively the high degree of approximation of sequences of linear operators acting on Banach space valued differentiable func- tions to the unit operator. These operators are bounded by real positive linear companion operators. The Banach spaces considered here are general and no pos- itivity assumption is made on the initial linear operators whose we study their approximation properties. We derive pointwise and uniform estimates which im- ply the approximation of these operators to the unit assuming differentiability of functions. At the end we study the special case where the high order deriva- tive of the on hand function fulfills a convexity condition resulting into sharper estimates.

MSC 2010. 41A17, 41A25, 41A36.

Keywords. Banach space valued differentiable functions, positive linear oper- ator, convexity, modulus of continuity, rate of convergence.

1. MOTIVATION

Let (X,k·k) be a Banach space, N ∈ N. Consider gC([0,1]) and the classic Bernstein polynomials

(1.1) BeNg(t) =

N

X

k=0

g Nk Nktk(1−t)N−k,t∈[0,1].

Let also fC([0,1], X) and define the vector valued in X Bernsein linear operators

(1.2) BNf(t) =

N

X

k=0

f Nk Nktk(1−t)N−k,t∈[0,1]. That is (BNf) (t)∈X.

Clearly herekfk ∈C([0,1]).

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA, e-mail: [email protected].

(2)

We notice that (1.3)

k(BNf) (t)k ≤

N

X

k=0

f Nk Nktk(1−t)N−k= BeN(kfk)(t),∀t∈[0,1]

The property

(1.4) k(BNf) (t)k ≤ BeN(kfk)(t), ∀t∈[0,1],

is shared by almost all summation/integration similar operators and motivates our work here.

Iff(x) =cX the constant function, then

(1.5) (BNc) =c.

IfgC([0,1]) andcX, thencgC([0,1], X) and (1.6) (BN(cg)) =cBeN(g).

Again (1.5), (1.6) are fulfilled by many summation/integration operators.

In fact here (1.6) implies (1.5), wheng≡1.

The above can be generalized from [0,1] to any interval [a, b]⊂R. All this discussion motivates us to consider the following situation.

Let LN : C([a, b], X) ,C([a, b], X), (X,k·k) a Banach space, LN is a linear operator, ∀ N ∈ N, x0 ∈ [a, b]. Let also LeN : C([a, b]) ,C([a, b]), a sequence of positive linear operators, ∀N ∈N.

We assume that

(1.7) k(LN(f)) (x0)k ≤ LeN kfk(x0),

N ∈N,∀ x0X,fC([a, b], X). When gC([a, b]), cX, we assume that (1.8) (LN(cg)) =cLeN(g). The special case of

(1.9) LeN(1) = 1,

implies

(1.10) LN(c) =c,cX.

We callLeN the companion operator ofLN.

Based on the above fundamental properties we study the high order ap- proximation properties of the sequence of linear operators{LN}N∈

N, i.e. their high speed convergence to the unit operator. No kind of positivity property of {LN}N∈

Nis assumed. Other important motivation comes from [1], [2], [3]-[6].

Our vector valued differentiation here resembles completely the numerical one, see [7, pp. 83-84].

(3)

2. MAIN RESULTS

We need vector Taylor’s formula

Theorem 2.1. [7, pp. 93]. Let n ∈ N and fCn([a, b], X), where [a, b]⊂Rand X is a Banach space. Then

(2.1) f(b) =

n−1

X

i=0 (b−a)i

i! f(i)(a) +(n−1)!1 Z b

a

(b−t)n−1f(n)(t)dt.

Above the integral is the usual vector valued Riemann integral, see [7, p.

86].

We also need

Theorem 2.2. Let n∈Nand fCn([a, b], X), where [a, b]⊂Rand X is a Banach space. Then

(2.2) f(a) =

n−1

X

i=0 (a−b)i

i! f(i)(b) +(n−1)!1 Z a

b

(a−t)n−1f(n)(t)dt.

Proof. Let

F(x) :=

n−1

X

i=0 (a−x)i

i! f(i)(x), x∈[a, b]. Here FC([a, b], X).Notice thatF(a) =f(a), and

(2.3) F(b) =

n−1

X

i=0 (a−b)i

i! f(i)(b). We have

F0(x) = (a−x)(n−1)!n−1f(n)(x),x∈[a, b]. Clearly F0C([a, b], X).

By [7, pp. 92] we get

(2.4) F(b)−F(a) =

Z b a

F0(t)dt.

That is we have (2.5)

n−1

X

i=0 (a−b)i

i! f(i)(b)−f(a) = Z b

a

(a−t)n−1

(n−1)! f(n)(t)dt=− Z a

b

(a−t)n−1

(n−1)! f(n)(t)dt,

proving (2.2).

Based on the above Theorems 2.1, 2.2, we have

Corollary 2.3. Let (X,k·k) be a Banach space and fCn([a, b], X), then we have the vector valued Taylor’s formula

(2.6) f(y)−

n−1

X

i=0

f(i)(x)(y−x)

i

i! = (n−1)!1 Z y

x

(y−t)n−1f(n)(t)dt,

(4)

x, y∈[a, b]or (2.7) f(y)−

n

X

i=0

f(i)(x)(y−x)i! i = (n−1)!1 Z y

x

(y−t)n−1 f(n)(t)−f(n)(x)dt,

x, y∈[a, b]. We need

Definition 2.4. Let fC([a, b], X), where (X,k·k) is a Banach space.

We define

(2.8) ω1(f, δ) := sup

x,y:

|x−y|≤δ

kf(x)−f(y)k, 0< δba,

the first modulus of continuity of f.

Remark 2.5. We study the remainder of (2.7):

(2.9) Rn(x, y) := (n−1)!1 Z y

x

(y−t)n−1 f(n)(t)−f(n)(x)dt,

x, y∈[a, b].

We estimate Rn(x, y).

Case of yx. We have kRn(x, y)k= (n−1)!1

Z y x

(y−t)n−1 f(n)(t)−f(n)(x)dt

[7, p. 88]

(n−1)!1 Z y

x

(y−t)n−1f(n)(t)−f(n)(x)dt (2.10)

(n−1)!1 Z y

x

(y−t)n−1ω1 f(n),|t−x|dtlet=h>0

= (n−1)!1 Z y

x

(y−t)n−1ω1 f(n),|t−x|h hdt

ω1(f(n),h)

(n−1)!

Z y x

(y−t)n−1 1 +|t−x|h dt (2.11)

= ω1(f(n),h)

(n−1)!

Z y x

(y−t)n−1 1 +(t−x)h dt

= ω1(f(n),h)

(n−1)!

hZ y x

(y−t)n−1dt+ 1h Z y

x

(y−t)n−1(t−x)2−1dti

= ω1(f(n),h)

(n−1)!

h(y−x)n

n + 1hΓ(n)Γ(2)Γ(n+2) (y−x)n+1i (2.12)

= ω1(f(n),h)

(n−1)!

h(y−x)n

n +(y−x)n(n+1)hn+1i= ω1(f(n),h)

n! (y−x)nh1 +(n+1)h(y−x) i. We have found that

(2.13) kRn(x, y)k ≤ ω1(f(n),h)

n! (y−x)nh1 +(n+1)h(y−x) i, foryx, and h >0.

(5)

Case of yx.

Then

kRn(x, y)k= (n−1)!1

Z y x

(y−t)n−1 f(n)(t)−f(n)(x)dt

= (n−1)!1

Z x y

(t−y)n−1 f(n)(t)−f(n)(x)dt (2.14)

(n−1)!1 Z x

y

(t−y)n−1f(n)(t)−f(n)(x)dt

(n−1)!1 Z x

y

(t−y)n−1ω1 f(n),|t−x|h hdt

ω1(f(n),h)

(n−1)!

Z x y

(t−y)n−1 1 +(x−t)h dt

= ω1(f(n),h)

(n−1)!

Z x y

(t−y)n−1dt+h1 Z x

y

(x−t)2−1(t−y)n−1dt (2.15)

= ω1(f(n),h)

(n−1)!

h(x−y)n

n + (x−y)

n+1

n(n+1)h

i

= ω1(f(n),h)

n! (x−y)nh1 +(n+1)h(x−y) i. Hence

(2.16) kRn(x, y)k ≤ ω1(f(n),h)

n! (x−y)nh1 +(n+1)h(x−y) i, when yx,h >0.

We have proved that kRn(x, y)k=

1 (n−1)!

Z y x

(y−t)n−1 f(n)(t)−f(n)(x)dt

ω1(f(n),h)

n! |x−y|nh1 +(n+1)h|x−y| i, (2.17)

x, y∈[a, b], h >0.

We have established

Theorem 2.6. Let (X,k·k) be a Banach space and fCn([a, b], X), n∈ N. Then

(2.18)

f(y)−

n

X

i=0

f(i)(x)(y−x)i! i

ω1(f(n),h)

n! |x−y|nh1 +(n+1)h|x−y| i,

x, y∈[a, b], h >0.

It follows our first main result

Theorem 2.7. Let N ∈ N and LN : C([a, b], X)C([a, b], X), where (X,k·k)is a Banach space andLN is a linear operator. Let the positive linear operators LeN :C([a, b]),C([a, b]), such that

(2.19) k(LN(f)) (x0)k ≤ LeN(kfk)(x0),

(6)

N ∈N,fC([a, b], X),x0 ∈[a, b]. Furthermore assume that

(2.20) LN(cg) =cLeN(g),gC([a, b]),cX.

Let n∈N, here we deal withfCn([a, b], X). Then

1)

(LN(f)) (x0)−

n

X

i=0

fn(i)(x0)

i! LeN (· −x0)i(x0)

ω1 f

(n), eLN(|·−x0|n+1)(x0)n+11

n!

LeN |· −x0|n+1(x0)(n+1n )

×

×h LeN(1)(x0)

1

n+1 +n+11 i, (2.21)

2)

k(LN(f)) (x0)−f(x0)k ≤

≤ kf(x0)k LeN(1)(x0)−1+ +

n

X

k=0

kf(k)(x0)k

k! LeN(| · −x0|k)(x0)+ +ω1 f(n), LeN |· −x0|n+1(x0)

1 n+1

n! LeN · −x0

n+1

(x0)(n+1n

×h LeN(1)(x0)

1

n+1 +n+11 i, (2.22)

from(2.22), and as LeN(1)(x0)→1, LeN · −x0

n+1

(x0)→0, we obtain (LN(f)) (x0)→f(x0), as N → ∞,

3) if f(k)(x0) = 0, k= 0,1, ..., n, we get that k(LN(f)) (x0)−f(x0)k ≤

ω1 f

(n), LeN(|·−x0|n+1)(x0)n+11

n! ×

× LeN(| · −x0|n+1)(x0)(

n n+1)h

LeN(1)(x0)

1

n+1 +tn+11 i, (2.23)

an extreme high speed of convergence,

(7)

4) one also derives

kk(LN(f))−fkk∞,[a,b]

≤ kkfkk∞,[a,b] LeN(1)−1

∞,[a,b]+ +

n

X

k=0

kkf(k)kk∞,[a,b]

k!

LeN | · −x0|k(x0)

∞,x0∈[a,b]+ +

ω1 f(n),

LeN(|·−x0|n+1)(x0)

1 n+1

∞,x0∈[a,b]

n! ×

× LeN |· −x0|n+1(x0)(n+1n )

∞,x0∈[a,b]

eLN(1)

1

n+1 +n+11 , (2.24)

if LeN(1)→u 1, uniformly, and LeN |· −x0|n+1(x0)→u 0, uniformly in x0 ∈ [a, b], by (2.24), we obtain LN(f)→u f, uniformly, asN → ∞.

Proof. 1) One can rewrite (2.18) as follows (2.25) f(·)−

n

X

i=0

f(i)(x0)(·−xi!0)iω1(f(n),h)

n!

h|· −x0|n+ |·−x(n+1)h0|n+1i, for a fixedx0∈[a, b], h >0.

We observe that (N ∈N)

(LN(f)) (x0)−

n

X

i=0 f(i)(x0)

i! LeN (· −x0)i(x0)

=

=

LNhf(·)−

n

X

i=0

f(i)(x0)(·−xi!0)ii(x0) (2.26)

LeN

f(·)−

n

X

i=0

f(i)(x0)(·−xi!0)i(x0)

(by (2.25))

ω1(f(n),h)

n!

h

LeN(|· −x0|n)(x0) + LeN(|·−x0|n+1)(x0) (n+1)h

i=: (ξ1). (2.27)

Above notice that f(·)−Pni=0f(i)i!(x0)(· −x0)iC([a, b], X).

By H¨older’s inequality and Riesz representation theorem we obtain (2.28)

LeN(|· −x0|n)(x0)≤ LeN |· −x0|n+1(x0)(n+1n )

LeN(1)(x0)

1 (n+1). Therefore

1)≤ ω1 f

(n),h

n!

LeN · −x0

n+1

(x0)(n+1n )

LeN(1)(x0)

1 (n+1)

+h1 eLN(|·−x0|n+1)(x0) (n+1)

=: (ξ2). (2.29)

(8)

We choose

(2.30) h:= LeN |· −x0|n+1(x0)

1 (n+1), in case of LeN |· −x0|n+1(x0)>0.

Then it holds (ξ2) =

ω1

f(n), LeN(|·−x0|n+1)(x0)(n+1)1 (2.31) n!

×

LeN |· −x0|n+1(x0)(n+1n )

LeN(1)(x0)

1 (n+1)

+ LeN(|·−x0|n+1)(x0)(n+1n )

(n+1)

=

=

ω1

f(n), LeN(|·−x0|n+1)(x0)(n+1)1

n!

× LeN |· −x0|n+1(x0)(n+1n )h

LeN(1)(x0)

1

(n+1) +n+11 i. (2.32)

We have proved that

(LN(f)) (x0)−

n

X

i=0 f(i)(x0)

i! LeN (· −x0)i(x0)

ω1

f(n), LeN(|·−x0|n+1)(x0)(n+1)1

n!

× LeN |· −x0|n+1(x0)(n+1n )h

LeN(1)(x0)

1

(n+1) + n+11 i. (2.33)

By Riesz representation theorem we have (2.34) LeN(g)(x0) =

Z

[a,b]

g(t)x0(t),gC([a, b]), whereµx0 is a positive finite measure on [a, b].

That is

(2.35) LeN(1)(x0) =µx0([a, b]) =:M.

We have that µx0([a, b]) > 0, because otherwise, if µx0([a, b]) = 0, then Len(g)(x0) = 0, ∀gC([a, b]), and the whole theory here becomes trivial.

Therefore it holds LeN(1)(x0)>0.

In case of

(2.36) LeN |· −x0|n+1(x0) = 0, we have

(2.37)

Z

[a,b]

|t−x0|n+1x0(t) = 0.

The last implies |t−x0|n+1 = 0, a.e, hence |t−x0|= 0, a.e, then tx0 = 0 a.e., and t = x0, a.e. on [a, b]. Consequently µx0({t∈[a, b] :t6=x0}) = 0.

(9)

That is µx0 = δx0M, where δx0 is the Dirac measure at {x0}. In that case holds

(2.38) LeN(g)(x0) =g(x0)M, ∀g∈C([a, b]).

Under (2.36), the right hand side of (2.33) equals zero. Furthermore it holds (2.39)

LeN

f(·)−

n

X

i=0

f(i)(x0)(·−xi!0)i(x0)(2.38)= kf(x0)−f(x0)kM = 0.

So that by (2.26) to have

(LN(f)) (x0)−

n

X

i=0 f(i)(x0)

i! LeN (· −x0)i(x0)

=

=k(LN(f)) (x0)−f(x0)Mk= 0, (2.40)

also implying

(2.41) (LN(f)) (x0) =M f(x0).

So we have proved that inequality (2.33) will be always true.

2) Next we see that

(LN(f)) (x0)−f(x0)=

=

(LN(f)) (x0)−

n

X

k=0

f(k)(x0)

k! LeN · −x0k(x0) +

+

n

X

k=0

f(k)(x0)

k! LeN (· −x0)k(x0)−f(x0)

≤ (2.42)

(LN(f)) (x0)−

n

X

k=0

f(k)(x0)

k! LeN (· −x0)k(x0)

+ +

n

X

k=1

f(k)(x0)

k! LeN (· −x0)k(x0) +f(x0) LeN 1(x0)−f x0

(2.33)

≤ kf(x0)k LeN(1)(x0)−1+

n

X

k=1

kf(k)(x0)k

k! LeN |· −x0|k(x0) + +

ω1

f(n), eLN(|·−x0|n+1)(x0)(n+1)1

n!

× LeN |· −x0|n+1(x0)(n+1n )h

LeN(1)(x0)

1

(n+1) +n+11 i. (2.43)

(10)

We have proved that

k(LN(f)) (x0)−f(x0)k

≤ kf(x0)kLeN(1)(x0)−1+ +

n

X

k=1

kf(k)(x0)k

k! LeN · −x0

k (x0) + +ω1 f

(n), eLN(|·−x0|n+1)(x0)(n+1)1 (2.44) n!

× LeN |· −x0|n+1(x0)(n+1n )h

LeN(1)(x0)

1

(n+1) + n+11 i. By H¨older’s inequality for k= 1, ..., n,we obtain

(2.45)

LeN · −x0

k

(x0)≤ LeN · −x0

n+1

x0(n+1k )

LeN(1)(x0)(n+1−kn+1 ) . Clealry by (2.44) and (2.45), when LeN(1)(x0)→1 and LeN ·−x0

n+1

(x0)→ 0, we obtain (LN(f)) (x0) → f(x0), as N → ∞. Notice that LeN(1)(x0) will be bounded.

3) Iff(k)(x0) = 0, k= 0,1, ..., n,we get that

k(LN(f)) (x0)−f(x0)k(54)

ω1

f(n), LeN(|·−x0|n+1)(x0)(n+1)1

n!

× LeN |· −x0|n+1(x0)(n+1n )h

LeN 1(x0)

1

(n+1) +n+11 i, (2.46)

an extreme high speed of convergence.

4) One also derives from (2.44) that kk(LN(f))−fkk∞,[a,b]

≤ kkfkk∞,[a,b]LeN(1)−1

∞,[a,b]+ +

n

X

k=1

kkf(k)kk∞,[a,b]

k!

LeN |· −x0|k(x0)

∞,x0∈[a,b]+ +

ω1

f(n),

eLN(|·−x0|n+1)(x0)

1 (n+1)

∞,x0∈[a,b]

n!

× LeN |· −x0|n+1(x0)(n+1n )

∞,x0∈[a,b]

kLeN(1)k(n+1)1 +n+11 . (2.47)

(11)

Inequality (2.45), fork= 1, ..., n, implies

LeN |· −x0|k(x0)

∞,x0∈[a,b]

LeN |· −x0|n+1(x0)(n+1k )

∞,x0∈[a,b]

LeN(1)(n+1−kn+1 )

∞,x0∈[a,b]. (2.48)

Consequently, if LeN(1) →u 1, uniformly, and LeN |· −x0|n+1(x0) →u 0, uniformly inx0 ∈[a, b], by (2.47) and (2.48), we obtainLN(f)→u f, uniformly, asN → ∞.

Here the assumption LeN(1) →u 1, uniformly, as N → ∞, implies that

eLN(1) is bounded.

The proof of the theorem now is complete.

We make

Remark2.8. Let (X,k·k) be a Banach space andfCn([a, b], X),n∈N, and x0 ∈(a, b) be fixed. Then

f(y)−

n

X

i=0

f(i)(x0)(y−xi!0)i = (n−1)!1 Z y

x0

(y−t)n−1 f(n)(t)−f(n)(x0)dt

=:Rn(x0, y) ,y∈[a, b]

(2.49)

We assume thatg(t) :=f(n)(t)−f(n)(x0) is convex int∈[a, b].

We consider 0 < h≤ min (x0a, bx0). Obviously g(x0) = 0. Then by Lemma 8.1.1, p. 243 of [1], we obtain

(2.50) g(t)≤ ω1(g,h)h |t−x0|, ∀ t∈[a, b]. For anyt1, t2∈[a, b] :|t1t2| ≤h we get

f(n)(t1)−f(n)(x0)f(n)(t2)−f(n)(x0)

f(n)(t1)−f(n)(t2)ω1(fn, h). (2.51)

That is

(2.52) ω1(g, h)≤ω1 f(n), h. The last implies

(2.53) f(n)(t)−f(n)(x0)ω1(f(n),h)

h |t−x0|, ∀ t∈[a, b]. We estimate Rn(x0, y).

(12)

Case of yx0.We have kRn(x0, y)k= (n−1)!1

Z y x0

(y−t)n−1 f(n)(t)−f(n)(x0)dt

([7, pp. 88])

(n−1)!1 Z y

x0

(y−t)n−1f(n)(t)−f(n)(x0)dt

(2.53)

ω1(f(n),h)

(n−1)!h

Z y x0

(y−t)n−1(t−x0)2−1dt=

= ω1(f(n),h)

(n−1)!h

Γ(n)Γ(2)

Γ(n+2) (y−x0)n+1 = ω1(f(n),h)

(n+1)!h (y−x0)n+1. (2.54)

We proved that

(2.55) kRn(x0, y)k ≤ ω1(f(n),h)

(n+1)!h (y−x0)n+1,yx0. Case of yx0. Then

kRn(x0, y)k= (n−1)!1

Z y x0

(y−t)n−1 f(n)(t)−f(n)(x0)dt

= (n−1)!1

Z x0

y

(t−y)n−1 f(n)(t)−f(n)(x0)dt

(n−1)!1 Z x0

y

(t−y)n−1f(n)(t)−f(n)(x0)dt

(2.53)

ω1(f(n),h)

h(n−1)!

Z x0

y

(x0t)2−1(t−y)n−1dt (2.56)

= ω1(f(n),h)

h(n+1)! (x0y)n+1. That is proving

(2.57) kRn(x0, y)k ≤ ω1(f(n),h)

h(n+1)! (x0y)n+1,y∈[a, b] :yx0. We have established that

(2.58) kRn(x0, y)k ≤ ω1(f(n),h)

h(n+1)! |y−x0|n+1, ∀ y∈[a, b],

where 0< h≤min (x0a, bx0),x0 ∈(a, b), andkf(·)−f(x0)k is convex over [a, b].

We have proved

Theorem 2.9. Let (X,k·k) be a Banach space and fCn([a, b], X), n∈ N, and x0 ∈(a, b) be fixed. Let0< h≤min (x0a, bx0), and assume that

f(n)(·)−f(n)(x0)

is convex over[a, b]. Then (2.59)

f(y)−

n

X

i=0

f(i)(x0)(y−x0)

i

i!

ω1(f(n),h)

h(n+1)! |y−x0|n+1,y∈[a, b]. We give our second main result under convexity.

Referințe

DOCUMENTE SIMILARE

In this note the semi-H¨ older real valued functions on a quasi–metric (asymmetric metric) space are defined.. An extension theorem for such functions and some consequences

A theorem of Baire concerning the approximation of lower semicon- tinuous real valued functions defined on a metric space, by increasing sequences of continuous functions is extended

An extension results for semi-Lipschitz functions, analogous to Mc Shane’s Extension Theorem [8] for real-valued Lipschitz functions defined on a subset of a metric space was proved

In this note we shall present a procedure to obtain extremal elements of the unit ball of the quasi-normed semilinear space of real-valued semi-Lipschitz functions defined on

, Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Proc. and Occorsio, M.R., On approximation

Lipschitz duals, meaning spaces of Lipschitz functions on a metric linear space, were used to study best approximation problems in such spaces (see [10]).. A good account on

The purpose of this note is to prove that for each finite family of single- valued or multi-valued operators satisfying some Meir–Keeler type conditions the (single-valued) operator

In 1931, Tiberiu Popoviciu has initiated a procedure for the con- struction of sequences of linear positive operators of approximation.. Kog˘