• Nu S-Au Găsit Rezultate

View of Free sets associated to a finite oriented graph

N/A
N/A
Protected

Academic year: 2022

Share "View of Free sets associated to a finite oriented graph"

Copied!
10
0
0

Text complet

(1)

MA,THEM.{IICA

--

REVUE D'ÂN¿.I,YSE NUIì4ÉRIQUE

DE TIIÉORIE DÞ I]"{,PPROXIMÁ'IIÑ

L'ANÂIYSE

NUMÉRIOUE

ET LA TÏIÉORIE DE

L,APPROXIMATION Torne 10,

¡e L lgLl, pp.5Z_7i '

FREB SETS ASSOCIATED TO A FINITE ORIENTED

GRAPH

by

nÄnu¡

M,q.Rcu (Bucharest)

(2)

58 DÄNUT MARCU 2

trVe

call

incid.ence

rnøtrix

(see

[5]) of the

graph G,

thc matrix Â:

: (^;) :1,2, ...,þ; h:1,2, ...,q, defined

as follows:

L'o: l, if n,: L

*(an)

+

L-(ah),

-1, if n¿: A-(a,,) + A

*(øh),

0,

otherwise.

3 FREE SETS ¡,SSOCr¡.ie¡ To A FTNITE ORTENTED GRAPH

59

rt

was

in [7]

as

weil that

we have defined

the notion of

minirnar*

related to a nåouir r.tnrp"".

"rÀr';i gx, and, *À-

,nãi"ä that any

nonulr

vector x e

se

is of the form x : f x, with x, e lp, minimal

related.

to lf and Vr= X for any i : l,Z,'l

. .,

*.

As to a vector X:É x,b,e

u)(,

we may say it js

elementøry as

äinotTur,t; *

,'L." " minimal related to

1ße and-

x, = {-1,0, l}

ror

fn ilTl

rve

particularized 9t to VLq,Rl and lf to Ker ¡

orland

rmV,

we

provedihat

any

nonrril'o""tor'i ='K";A"i, äi tn" form : ':

å *,", with

ø.,

e [! - {0} and X,

elementary related

to Ker 7\,

and.

any nonull

vector

y e fm V is of the form y :i,p,p, with

g,

=R_{0}

(2.2).

spaces.

¡Er¡r'rrroN 3.r. r,et us

consider %,

as a

space

of finite

dimensions

andEitsbases.Asets

= &, s,;Øi;said io b;,rr;; îåråî"¿ to a

nonult

#'fåï -lJtul: ir anJoniv ií iã'^äì"'v nonud x =

x,

with s(x) c

e R e m a r

k 3'1'^one" can presently notice that if ß is free

and

ecß, e+Ø thenerslree.

l. If

incl_usion

g c of úl

setsi

ls frec

zøith reløtetl.

tiis--pr"prrty^.îa*o,o= to

Ker

7\

ønd.

møximat ,\î,

then,(as que Xth)

e Ker [,

elementøry, so that yrot

:,

6o

+ È

'*y, ;"',

witk xlt e {-1,0, t}. oo'ï

Proof.

If a" e g\8,

then, having

in

view

the maximality of ï,

the set s.

lJ

{a")

is

iro longèr

it"ã t"r"t"lä 5", a ; that

means

that

there is

x - Ker'Ä, x a o*.øtr.ã(ð-;; U-{i¡^fs,) -" *'-'

Taking

into

account. (2.2),

it

means that

X :io",X, *ith - {0}, X,

elementary

in Ker ¿\

anð.

X,tr X for

all

i:1,2,

I

we

shall denote

by vp., Rl,

(see [17'l) the set of

the

linear forms

x with

4

as bases and R as value range (we denote by

rl

the field of the real num-

c

bers),

X :D,xoø',

h:1

x*= R,

where

!a, is the vector with all

tine

xo:e,

except lor xr: -l-1 and

0u

the vector with all t]¡e xo:Q.

Similarly,

we

define

the vector

speace

z[*, R]

as consisting

in

al1

the

vectors of

the form Z :Dz¡/t¡,

þ

z¡e R,

lvhere 0¿¿

is the

vector

rvith all z¡:0

anð.

¡:l

!n,

_rs

the vector xcept for z¡: 11

practically, Z[ú1,

R] is

Ra and

To the

above

d the

following applications

will

be attached (see

l17l) : Rl, V:V [;, RJ

--+

T/ls.,Iì]

defi-

ned

by A(X) :

Ð(Ð,"r.r

.%¿,

v(z):å(å^r ,,) .oo,

where

i:

X : Ð

xn&p

e Vlg,,Rl

and.

Z :Dzrn¡€ Z[:ìÌ, R].

þ:t i:1

Out of the definitio's of the functions 7\ and V,

results

the

fact

Þq

that ¡

(oo)

:Ðnr"o, lè:1,2, ...,q

anð,

y(n,) : Dnïoo,i:7,2,...,þ

which

means

that I arrd V are two

hornomorphisms betrveen

v[9,fl]

and' V

t

,

R].

They have as

a matrix for

linear transfornration,

the

inci- dence

matrix of the

graph G

: {

,

&),

aud according

to [lS] it

means

that dim Vle,Ilrl:

dirn

Ker I f

(dinr

Im[

=- dim

Im¡) or:

- q:

dinr

Ker ¡ f

frank

(^)

=r dim

Ln V]

(2.1),

where

I(er ¡ : {X e [jt, R]lV(X) :

0u.] and.

Im V :

V(V [e¿,

R])

t17 l).

ector

space

of the finite

dimensions

and It the values

range,

and,

sub- reord.er

relation ,,E",

whef

e X É Y

d s-(X) - ß-(Y), with &*(X) :

"

I xo

10l¡, 8(X) : ß*(X) U ß-(X),

andX: D

i:l x,boe %,. only if X * a vector is nonull, x e ,. c æ, is,saicr "rg to be min,irnq,r relatecr to a nonurl subspace r,f of Ø, if ancl

""aùr-"oy'"ï"ä w,-'w¡th s)(y) cs(X), we,trave o, 4 1p.

4¡€ Iì -

., %.

(3)

60 DÃNIJT MARCU

But if X.=X, then, 4(Xr) . s(X) and

acco¡d.ing

to the

relation 3.1. we have

û.(X,) g C U

{øo},

which

means

that

Xn,

being

elernentary,

is of the form X¡:

xÍl

* Ð x!) an, with x!) - {-

1,

0, 1}

and

4d*

xft = {-1, l}.

fi x[ót:O, then, g(X,) c {, i.e. í is not free

related'

to Ker 7\;

contradiction rvith the

above hypothesis.

ff there exists io = {1,2, ...,nt}, so that x["]: l, then

we take

NtÊl

:

Xa,.

But, iÎ xYl: - I for all i : 1,2, ..

.,

rn, we

consid,er the vectors

X; : -Xr, i:1,2, ...,vtt, which are obviously

elementary

in Ker 7\

(see

(1.21) irr [17]) and for which g6;) ç s U {an}

Lor every

i:1,2, ...,m.

O1 course,

there

exists now

io u {1,2, ...,rn} lor

which

x¡Íiol

- 1 and

we

take Xtn :

Xi".

So, it exists

Xtht

-

øo

1-'L xltao,

elementary

in Ker ¡. ¿s¡

us

n o-&

prove now

that f,trl

is unique. To

this

purpose

let

us consider

X e Ker A,

elementary,

with e(ft) = ï l)

{øo}

of the form Î :

an

*Di,o".

Since Ker

7\ is a linear

subspace,

there result. tl" îj=Jt that

fr.

- -

XÍht belongs

to Ker A, which

means

that

oo*l

| (i. -

*|f;t) øo

e KeÍ A.

As ø(.Ë

- Xrh\ c s

and. E. is free related.

to Ker

¿\,

it

rneans

that X =

XVI

(Q.E.D.).

Let us

consid.er

Þ: lg\.&l

and

let us

re-mark

the set 4

as

follow:

A,: {Vy

Vn,..

.,

V

o, Ur, Ur,

. .

.,U;} :

{c¿t, Ø2, . .

.,

øo}, where

Zo=g\9, a.: 1,2, ...,h,, and Ug. ff, I : l, 2, ...,nt', witlt * :

q

-Ã.

Rem ark

3.2.

Having in view the

theorem

3,1, it

means

that

for

I FREB SBTS.ASSoCIATBD TO A pfNrTB oRTBNTED CRApfÍ 6t

.Proof

. r,et x

be a vector

of Ker 7\.

According

to the

r,vay re-marked.

the set

ú[,

it

means

that X: É

e-t

frnVn*

0:r

^f.*rUo,withxn,rBeR, ø:

:1,2, ... h; g: 1,2, ...,rn,

using the

courponents

of the vector x we

define

the

vector

ø'

X-ft:ÐxøUr_.

xoxrt

\- ;

¿-J 0==r

h

xs

- \

ø:l

x"xf;l

4

lrÀ1*

X: D

d'-l

xoXtøt:

e:t

D xnVnlD Ð"."å'

c=r Flr

,, lo h,-

uu:Ðxsus_

ÐÐxnxftur:

hn

¿-l 0:l

ÐÐ

U

vecto¡ for which

rve have :

u ø. (3.2)

r.Xi: 0s, it

results

ihat 0e is nul1 vector of

the

any

d.=

{1,2,...,h}, the¡e

exists

an uniqus f,tcJ:Voi

mentary

in Ker 4 with xf) e {-1,0,

1}.

Dr)Fr\.rrTroN 3.2.

Let lX,bealinearspaceoverR

and.

(Xr,Xr, ...,Xn)

a vector

system

of

9[. \Me

call the system (Xr,Xr, ...,X*) ø

systerne

of

generøting uectors

of

"X,,

iÎ any vector X e

%,

can be

expressed, as a

linear

combination

of

these vectors

i X:f,rr*, 'r'ith z, eF., X¡ e

"X,,

'i:1,2,...,h.

Tr¡EOIìÐM

3.2. The

Uectors

Xtrtx\2t,...,xtal,

ma,h,e

uþ a

systern oJ

generating aectors

of

tke sþøce

Ker [.

. But, 6 - h = I*r A and taking into

account

the relation

(S.2)

it

means

that

8"(X

- ,ï) = {Ur,

(Jr,

..l,Ur}: s.

Since g.

is a

free set related

to Ker A, it

results

that X _ i :

O*.

b

So,

X: D xdXtut.

(eIì).D.).

a:1

DEFTNTTToN

3.3. L"t gj be a lirrear

space

over lì, ancl (Xr, Xr,

. . .

..., X"> a vector

systern

of fi. Thc systeln (Xr, Xr, ...,

Xu)

is

lineetr incleþendent

if

for any

null

linear cornbirration

f

r¡:0, ,i:1,2, ...,n,

r,vhere ,.¡

€ R

andi:l space 9[.

DgrrrNrl.roN 3.4.

l..t

gl.

be a linear

space

ovcr R

and.

(Xr, Xr,

. . .

..., Xn) a vector

system

of fr.

,I.he system

(Xr, Xr, ..., X,> is a

bases

of the

space g[

if and only if (Xr, Xr, ...,

Xu>

"orrrtit.rt", a linear

inde_

pendent systern

of

generating vectors

of the

space g[.

THDOnltrÙr S.S. 'fhe uectors

XItl,

Xtz),

..., Xút

reþ.resent

ø linear

ind,c_

þend.ent system

in

tke sþøce Ker

[.

,n

L'rå"'uB,

ele-

p:1

(4)

62

Proof

. I.el rtf,ttt I

rrXtzt

¡

nation

of the

vectots Xttl,

Xl2t,

- . .

we

obtain'

l

8, : r1V1*

,r.*ltt

Ut I

rrxf,ttUr

l- I

rrl/

, )- ,r*Í') U, ¡

rrxf,"t(I, -1-

-¡ r"V¡lrtxr tu,¡rr*fiU" +

.

: rrVl I rrV, + ... ¡

r-¡V

¡ I

h

Y ¡xlt

(f ,,*:i'\u,J-...*

\Fr

I

DÀNUT l"fARCU

'.. I r¡Xh:8s a null linear

combi-

,

Xtu. Having in

view

the

remark 3.2'

+

'\tlLDt'

r.*t!u- +

+

tþiilrfl'

r.*!t(l- +

l,/¡ I

x

Z FREìI SurS ASSOCTATED To A FTNITE ORTENTED GRAPH

6J

/¿, we can say

that the

dimension of the subspace Ker

7\ is

equar

to

E, i,e.

space

Ker

A

,

u'hich

is

made

up of the vectors

XUl, Xt2l, . .

.,

yrat. ,Ihese

vectors are uniquely

determined related.

to the

set

E s rl flgl : tn :

A), which

is

maximal (as compared

to the

inclu_

sion

of

sets) rvith

_ Practically, th

bases

for

Ker

¡ is to find. a

set

iå,i;'lï ;Tli:"i :

r,

2,, u,o,,o*lä*'3,1lx*:*{ j ä*" :;':

RemarkS.T.I,et's

co'sid.er

{ cû., free related to fm !

and

maximal

with this

propertv.

Bv

means ot

ã tn"oiÀ; ;;bgr"s to

the theo_

rerrr

e

frn 3.1,

V,

\\¡e elerncntary, can pro\¡e

so that that if

&n '"

e o.'.. g,

then there

is

an unique \ztÀJ e

\tt\ '-,¿o +

uooü

D

),'"!tao,

with ljale {-1,0,

1}.

ft

¡eLr.a¡

:i and

re-marking

the set d so that g: {Wr,Wz, ...

...,W;, Tr, Tr, ..,, T';j :

{ør, &2,

. .,

eo},WB

e

úI...

g,

p

: 1,2, ...,s

and

1, e î, æ:1,2, ..,,/, with z:

q

_

s, we

obtai' the

vector unique

systerr <Ytlt,Y,t2),...,Y1"r¡ \¡ith yr0l - We+ É y:ot.f", u,ith

,,1pt u

= {-1,0,

l},.-P

:1,2,...,.s. This vecto, ,y{"L: can be

proved.,

by

a

reasouing similar to

that

rrade iu the theorenr.

g.z.

a:rcl

8.3. to

constitrrte

a

basis

for the

space

fm !

and.,

thus,

dirn

Im V -: s.

1a.2.¡.

'Iakirrg into

account

the relations

(8.6), (8.7)

and

1Z.t¡

we get: q:

:

À

+

s and considering the

fact

that m

:

q

- n und,i\ q-

s,

it res'lts that m:

S- ând

r :

/t. and, thus,

&.

: {W1,1(r,

.

.,,1A¡, Tr, Tr, .. ., T¡}

:'{Vr, Vr, ...,Vu,Ur.,Ur,...,U;}:

{or,a¿,

...,aq}.

(38)

.

R e rn a

r k

3.8.

practically speaki'g, the d.eterrninatio' fo a

basis

fol the

subspace

frn !,

goes down

upon the

discorrery

of a

set

î c

ê1,

I¡ee

related to rrr V anã iriaxirnal

"iit' tt, ¡;.;"r,n

Ãccording

to it,

the

construction

of the

vectors

yrtl, ylzl,

. . .,y1,,1

uniquply

determined as

compared

to &, is i'rediate if

.,r,e har¡e

i' mi.d the

remàrk S.7.

6

-f /¡ U;:

1

5-

lJ1

jt U

D

I ¡X-U U (3 3)

Denoted

by

co¡

:þr,*:tt, i - 1,2, " ',1n,

ttn'd'

taking i.to

account the

relation (3.3) .té ãbt"itt: 0* : 1'rVrl rrl/r¡ "' + r¡Vn I orUr f I

clr(J, -nu-t,

+ .. -i tt;U-'

(3.4)

{lt/r, I/r, ..., Vi, Ur, Ur, ..., (l-} -- {o', &2,

'

', ao): &,

anð

having in 'rild that t" ii a

bases o1

Vlt,Iìl it

means

that

the system

-¿i:,:/r,

...,v k,(Jr,tJr, ...,u¡) is lineàr itrclepe.dent and from

(3'4) r

¡e

have

: /t: 1'z --

r

h or :

cù¿

=

- (ù* 0'

(3'5)

Thtrs, iÎ rrXttt I

r"Xtzt

+

.

.

1-

rlxtht - gs, theu, having in

view

(3.5) ,

it

lneatìs

that

the vectors

X[ll,

.YL2 l,

...,

Xthl

rriakc up

a linear inde-

pcrrdcrt

systcrn

in Kcr A (Q.Il.ll.)

R e nr a

r k

3.3.

I{avirrg iu mincl tirc

theorems 3.3,

3.2, and

taking irrto

ì".o""t the

definitiorr"3.4,

it ne¿'s

th¿it th.e

vectors

Xltt,

Xlzl, ..

'

. .

.,

Xtt¡)

form up a

bases

of the

slrace

I(er !'

r)ttr¡rNrTroN

3.5 A liuear

space

I is

considcred'

to

harre

the

d'inteto'

si,on

n

iT:

a)

there exists

in this

space

a

system

with n linear

ind.epeud.ent vec-

tors

('rt'

is a nonull

integer) and

b) every vector

system

of tr which

contains rnore

than ø

r¡ector 1s

not liircar

iúd.ependent,

better to

say

it is

I'ineør d.eþen'dent.

R e m

ar k 3.4.'we can also add the fact that the

dimension

of

a

space

*

reprezents

the

rnaximal number

of linear

ind'ependent ltectors of

this

sp:Lce.

R e rn a

r k.

3.5.

Flaving in

ÛiintL

the

rernark

3.3.

and

the fact that

if

a linear spoce

"dmits a bisis rvjth

r¿ vectors,

theu it

has

the

dimension

(5)

64 DÄNUT M1\RCU

I

R e m a

r k

3.9. F'rom

the

above rneutioned.

thns

r¡'e

notice that if I c t is free

related.

to Ker ¡

and.

maximal with this property,

then,

lïl:m: dimlmy : rauk (Â),

and.

if I c

Û,

is free related to Im

Ç

and rnaximal with this property, then ï : h:

d.im

Ker ¡.

T,DMMA 3.1.

If & c

& is free velated' fo

Ker L,

tken there exists

{ã-&,

free

rel,ated,lo

Ker ¡

a.ncl møxirnal

uith,

tkís þroþerty, so thøt ã"

- {ã.

Proof

. I,et õ c & be

free related.

to Ker [. ff õ is

nr.aximal, then we

take Oã,: *

and.

the

theorem

is

proved.

ff õ is not

maximal,

then there

exists

at

least

an arc ¿ e 4\ õ

so

that

ã,

U {¿} to

be

further on

free related.

to Ker [

.

Since

ã c &

and. & is

finite, it

means

that there

exists

a finite

num-

berof arcs,bethem &:{or,,&í,,...,or,},ã -g\ã, so that ã,¿A

to be

free related

to Ker ¡ and for any ø 4\(ã U A), the set õ

[J

U g U {ø}

has

no longer this property. In this

case,

if we take ï 6 : : ã ¿ 4, it

results

that e¿ is

free related

to Ker

¿\

,

maximal

with

this

property and õ ç rA.

(Q.E.D.)

T,EMMA 3.2.

If ã - Aisfree related,toI:nV,

tkem tkereexists

{6 cü,

free reløted to

Im V

ønd. rnaxirnø|.

witk

this þroþerty, so

tlmt

á.

- {".

*,

Proof. Analogous

to the proof of the

lemma 3.1.

-

R e m a

r k

3.10.

Taking into

account

to the remark 3.9.

ancl lemma

3.1, it

immedijLtly

results that if

ã"

-

A,

is free

related.

to l(er 4

and

l&l :

m, then-4 is free related

to l(er ¡

and.

maximal with this

property.

Sirnilarly,

&,

c

€[

is

free

relatet to Im Ç and l&l : h, then,

according

to the

lemma

3.2

and.

the remark

3.9,

it

results

that the set 4 is

free

related.

to Im I

and.

maximal with this property.

Accord.irrg

to the

rela-

tron (2.1) we have also

got

i

Q

:

h

t m.

(3.9)

I'HEoRENT 3.6.

If { c

A.

is free

related'

to l(er I

and' m,øxirnal

uitk tkis

l>roþerty, tken

á'...g-

i,s

free

related,

to lm V

ønd, ffia'xírnal

witk

tlt'is

þroþerty.

Proof.

Having in nind the remark

3.9,

it

meaüs

that l9l : tn

and

thus l&\E.l : å

(see

the relation

(3.9)).

I,et

us prove now

that the

set

S\g is

free related.

to Im V. Wit¡

this

purpose-,

let

us consider

Y e Im V, arbitrary,

so

that e(Y) c 4"..1'

h

Tf

g(Y) &\g it

rneans

thatY : Dy*V,, with./, e R,

a

: 1,2, .'.,

h'

Taking into

account

the inn", pråãlct within the lirrear

space Z 14,,!.1 (see

¡iZ1)

and using

the

results

ïbtined. within the paragr"ptt + in-

[17],

9 FREE SETS ASSoCTATED To A FINTTE oRTENTED GRAPH

65

we ç get: *

[XtdrlY,]

:0, for all lþ

1

qL:1,2, ..., h. But, 0: [Xtc]ly] :

:lr"+ D *f) uglÐr, V"f:o*for

all d

:1,2, .. .,å

and thus

y _ 0e.

This fact

leads

's to the

cónclusion

that the set

úI

... í is

free related

to Im [. ' \-

Consequcntly

wl

have

t

'....8_.free.related

to Im I

and

ld...e.l : þ;

und.er such circumstances, according

to the t"*árk

g.10,

tÌr"

theorem is

proved.

TrrrionrM 3.7.

If ï

_=

&

,is

free

reløted

to Im !

ønd. møxiytøl

uith tkis

þroþerty, then

g' -

&-

is free

rclated.

lo Ker ¡

ønd. maxinrøl

with

this þroþcrty.

lroof. Similar to the proof of the

theorem 3.6.

Remark

'.il. îhe

theorems

s.6

anð,

s.7 ailãw us to

assert

that

the sets

S

and

&

make

up

a

parti

rling to the remark 3.7 we ^havË

: {Wr,W2,...,W;} and a':

got{Vr, R e m

ar k

3.12.

Taking

into 3.11

we may

assert

that the

mo

Ker 4

'úe automatically have a base having determined a bases for

fm I

TrrEoRrJDr

3.8. Let &t c

&. b reløtèd. to

Im l,

so tkøt

d, f) ü,

{ c 8-fre9

relq'ted

to

Ker

6

ønd, møximat

uith this

þroþerty and.

{ c. g

free

reløted.

to rm |

øød møximal wi,th this

þroþrity,'ii'mú

d:r-=-g:oria

&zc8'

lroof .

T,et

us

suppose that _&,

e g,

= g.

According

to the

lemma

3.r there

exists ss.,

ê-& free

relatèd-

to Ke; a ;"áää""i-"ñtùïht,

property

so

that

,9, c:

ïgr, and

according

to the

lemma 3.2

there

exists

Ù

*, = & free relatet to rm y

and. maximar

with this property so that

tLq<-äJo.

But,

according

to the

remark S.11,

lve have ï*, lJî*,: A.

anð,

ï*,À {*,:Ø; which obviously leads us to ï",: ä,

^rd,"

ïr,:

&r, where,

taki'g g - c\

and

g:

.nz,

the

theorem

is

proved..

fet

us suppose now

that &rU &, ç-úl and let A": {dr:e.,, ..., e;,}: & _ (&r[J ilr)

tre.

U

{oo,)

is

free

related to Ker Ã,

o,

mV.

now,

against

all

reson,

that

A..

I

I

anð,

t,, U {d,,} is not free

relaieã

under

such circumstances (see

the definition 3.1) there

exists

x

e

e

Ker

A, x *Øs

and

y =rm v, y ier,-iá"tlài'aikl

='*,"ü'iu,j,

5 - L analysc numérique et la théoríe de l,approximation ,Iome 10, nr. 1, 1981

(6)

66 DÃNUT MARCU 10

A(Y)

= &rl) {ã,,}, where X : %¡d.¡,J-1,

xoao

and Y : lidr,+ T,

ysos,

oo-&t og.&¡

with

x¿,

* 0

and. !¿,

*

0.

Having in

vierv

the inner product of Vlt",Rl

(see

[17]) and

using the results obtained

in

the paragraph

4 from [17], we

obtain

: [XlY] :

0,

which leads us

to

0

: txlYl : %i,d¿,*,Po:*"r0,,o,, *

oD yrtesl: x;!;,*O.

We get thus a contradiction, and. therefore, either

g1

U

{ø¿,}

Is

free

related to Ker A, or S, U {dt,} is free

related.

to Irn !. We

shall

put

gl't : s, l)

{et,}

if sl U

{ã¡,}

is

free related,

to Ker 4 and g't't: erl){ã,,}

g, U

{ø¡,}

is

free related

to Im

V.

By a similar

reasoning we

can show that ú[lr U

{ã¡"}

is

free related.

to Ker ¡ or

&f,tt

l)

{a,"}

is free

related.

to Im V, sirnilarly building

up

one of the sets

g,l't

:

ú[ftr

U

{a¡"}

or &['] : s['t U

{ao^}.

Going on just this way, we obtain the sets

&.ltt anð,

ø[8)

wítln

f, g =

{0,

1,2, ...,r},

e.tot

:

&r, &Lo)

: &", for which elfr i. free

related

to Ker A,

eütt

is free

related.

to fm V,

g,[r]

)

g.Y)

=Ø, gy) ¿ af) :

a,

&r - &trt

anð. &.,

= g;t); so \¡e find the

hypothesis

of the first part

of

the

demonstration, where

tealing {: øln

and.

&: g.[r], the

theorem is proved.

R e m a

r k

3.12.

The theorem

3.8 represents

an extension of

the theorems

3.6 and 3.7. Practically it's a

stronger representation

of

these

two

theorems.

4. On the

free sets relatcil

to Ker A. Within this

paragraph we shall

give a

theorem

who

characterizes

the free

sets related.

to the

subspace

Ker ¡.

DÐFrNrl'roN 4.1.

We call

cycle

of length z

(see

[17]) a

secluence of

r + |

nod.es (nio, ni,, !t¡,, . . .,

Øìr) and a

sequence

of z arcs with

sign '("rø0,, Ez&h,,

...,

eranr) where

ei:

1

or -1,

so

that for

each

j :1,2, ...,r

we have:

I

A*(an,), if

: l,

I

L-

(ø,,,),

if e¡:

1,

tuii-r:

\

x-i.øoo),

if

: - l, and n'¡: \ A *(oi¡),iI

: -1.

W'e d.enote

a

cycle

by a

ln¿"1, and.

its

set

of

arcs

by

t(oln¿"f).

THÞoREM 4.1.

Let g c &,

S

+ Ø be. The set I

'is

free

rel.ated. to

Ker ¡ ,

,í,f a.nd, onl,y

if

there

is

no cycl,e

alnl

so th,øt

t(<llnl -

S.

Proof.

I'et S c

9,, S

*Øbe, freerelated.to l(er¡ and let

us prove

that

there

is no

cycle

alnl with

€[

(aln]) c

A.

We

suppose against

all

reason

that there exists a

cycle

alnl

wrtb

€I(o:ln))

:

{ûn,, a.þ,,

...,

an,}

9 S.

According

to the

lemma 3.1.

from

[17!,

f

the

vector

X : -t

e¡a,p.

is nonull in Ker 4,

and.

as

e.(X)

:

ú(<,¡lnl)

c

9,

it

means

that I

j:t

is not

free related

to I{er [ ; which is

contrad.ictory to

1l FREE sETs

^ssocrATED To ¡\ FrNì.TE

',ìTENTED cRAr¡r{

the

above

-

stated 6z rs no cycle <,.,1n1

wit

to Kcr A.

Against

Ker

A

which leads

with CllX) c

ç

According (2.2) the

vector X is of the form X : Ð aqX,,

witþ ct e

e f{ - {0} a'd ¡f,. "t"mentary iu

5*o, lod x,Afl'ni::u, ;:;,;,

..

/tL. Because

l,

is elernerrtary

in

f,c.r A.,..thg_o,

u"lo,áirr* to

the theorem

s'B rrom

Lt7

L jt i,

'

"¡iìl'ì"ivj ""'^'¡n1 ì,¡i,. aILî"üï tro,,

ah", . . ., ø,,,.}

so

that

X ¿

: ic2)"1rt. Ilut

since

Ì, E X and

e_t(X)

c f,

then

t(Xn¡

c. g

and, thris, therå.exists a cycle aln-l with.e@fu1) ç.f ; which is

con_

tradictory to the

abovc

_-;t"i"ä'riypottr"ris.

' 5'

Gn the

froc

sefs ¡'erared ú"

ù V. Within this

pa.ragraph we shall

fi::,;i'.n'"o",",'":*:"å',.:f il;'î'""î;f ',.ff ï::rff !TTi"*-"iir,"g,"pi' i,,duliä'f'yä?:: ]' r'et "i'r' c&¡,

;r1*

t'.Ø. w"

"uir

section

(see rrTj\

ä;i,åi;fi jT,;f ',î-i:i"':;,]i{,":l!::,"*,,;;:!îfi¿",i:i_1*

a).

A *(øn¡ e

ÐL*,

and

A

-(ar¡) =

ÐI

\

пo,

if

: l, b) A-(at¡)

¡rì>ß

and A *(oi¡) =

п\g¿*,

if e¡: _1,

the set

&.'F

:

{a.¡,,,Øh,,

...,.øn,} beei'g maximal

(related

to the

inclusion

of sets) with this

property.

iÍ .,:;':';',ì'l, ,!ry',,i:'Ì,_î,,*'"f {fo,i, *{ris¿r r

zs

rree

retøtcd. ro

rm v, ,a^rlíZ!;,lï"Fri"r*, ,rr*,#f"ai,""r,"lntù to r,n V

and

ret us

prove

Against all

reson

we

suppose

that there

exists

a section

E

:

{"ruo,,

Ez(trk",

.'.,

e,at,Ì

with g'k

{ãi,, oo",

..., a4}

s s. ;";;rÀì* ,, the

theo_

rem

2.1 from fl7l, the vector O:Zre¡ø¡,is nonull in fm V,

and

since q,(y)

:

&)o

c E it

^T"-ul, that f io'ìot

free related

to fm V; which

is

contradictory

Reciprocally,

to the let

us

above-_

suppose

ãt"r"j, ttaithere

hypothesis.

is no ;ection

E with.

t* -E

and

Against let us pïove that I ir'ir". r"*rli"u to rm

V.

all

rea

which r""*a. .," io

il :åä::i:i::":Til"åi: ï'=Ti ;'î::i ;þîi Ë

(7)

6B DÄNUT MARCU 72 13

\ü'e deJine nro)

_

d.i

FnEE SETS âSSOCTATED TO A FINTTE ORIENTED GRÀP,H ì.

69

According

to

(2.2), the vector

Y is'of

the forrn

Y: Ð p,Y, with 9; = R - - {0}

and

Y,

elementary

iu Im Ç

and.

V,=V for all i : 1,2,

.

..,

ñ..

If Y, is

elernentary

in Im Ç, thetr,

accord.ing

to the

theorem 2.4

from f17], there exists a section E:{srah,,Ezãh,,...,ur¡dn,.} so tlnatYr:

: + D j:r

x e¡a.¡..

Flrt

since Y,

E

ts and

8.(Y) cß, then

A.(Vr¡

- $

and, thus,

there

exists

a

section E

rvith g(V,): &*

c-

9; which is contradictory

to

the

above

-

stated hypothesis.

DnrlrNrlroN 5.2.

We call chøin ,,vitt^ the length r

(see

[17])

from

the

node

ntotlnenodem

asequence o1

r! l

nodes

(nq,ni,,...,n¿,)

and'

a

sequence

of r

arcs

with

sign (eg.¡,,, e2a,¡,,

...,

e,&pr), where lû¿o:

tt, /t'¡,:

: rn, ei: 1 or -1,

so

that for

every

j:1,2, ...,r

we have:

Particularly, a

single nod.e (and

an empty

seçluence

of

arcs) is regar- d.ed as a chain

with the length

zero

from the

nod.

to

itself.

We

denote

a chain frotn n to m by ^(ln,rnl and its set of

arcs of arcs

by A.ftln,m)).

DDrrrNrrroN 5.3.

Two

nodes

n

and,

nr

are mutuøl'ly connected' (see [16]) and we denote this

by

'/t,

-

i,n,

if

and only

if

there exists

yln, m).

Evidently,

,,-" ts an

equivalence

on

tl/-

and

ind.uces

a partition in the

clases :)Ir,

flr,

.

.., fl[",

calleð. connected, comþonents (see [16]).

l'rrDoREl\{ 5.2.

Let I

c:

g, I + Ø be,

ønd &Lr,

ür,

. .

.,

Sí(

",

tlte connec-

ted. comþoncnts

of

thc graþh

G:

<ÐL, g.>.

tke set

I is free

reløted

to

tke

subsþøci

Im V,

îhen,

for-all, ie {1,2, ...,s}

ønd

for

øny '}t,!t'L

ë

ÐLr, tkere

ex,ists

ø

chøin

yln, ml

zøitk ,9(yln,

m)) c g \

g.

Proof.

I,et I c g, I *Ø

be free related.

to Im V,'io = {1,2, ...,s}

arbitrary

fixed

and. n, ln

e

,tI;". W-e denote AV øtÏt t the set of all

the

chains

from the

node

n to the

node

m. Evidently,

ø[],)-¡

is not empty

because n,

rn e

&L¿o.

Againit all

reson

.ffe

suppose

that for any \ln, rnl = ø[iL¡

we have

not A.(yln,ml) ç g\ 9, which

leads

to the

existence

of an arc (at

least

one)

ø e &.for

which

ø = &(^(ln,ml)

arLd.a.

9.

-Let us consid.er

yoln,ftl

such

a chain, €I(\oln,m)) :

{o[?t,

o[l], ..., oll'] its set of arcs

ar-.ð, {ø1n",'-.,

oro?,

...,o|otj q .9(yoln,rnl) the set of arcs for which

n[:.].

=

&(yoln,rnl)

''1, '¿u' "ti

anð. a[ol t'tt

= 9, i:7,2, ...,',,.

ø[ot),

efgr

: l,

olî), O

e{or

: - 1 and we

consider

the

vector

f,,

a*(

A-(

Z : Dnf,t,

T vector

which

obviously belongs

to

Z[&t,

R].

Having in view the

construction

of

n[on] anð,

Â

we have :

v(z) :

" *['l): t, ,@r,,¡ :

j:l

É (f nî'*r)

:Àq',.ï: Ð"';'"r:;

(s1)

Putting Y : É "lit ' .ï)we have,

according

to (5.1), y e rm

V,

Y *

0s",

e\Y) c F and

subsequently,

g is not free relatcd to Inr [;

which is contradictory to the

above_stated hypothesis.

Therefo¡e,

if

s is free rerated to the

Jm V, the.,

there exists

yfrø,mle

= ø[l]^t,

so

that €rkln,rnl) ç s \ s. (e.E.n¡

6. Matrix

assoeiafcd

to the

free sets.

I,et rls

consid.er

{

c_ &.

a

free set related

to Ker ¿ and

rnaximai

*itf, tti, präp*ro'äccording to

the theorem 3.6,

the

set g'

- g '

& is frec related

to rm ! a'd

rnaximal rvith

this

property.

, -Accordi'g to the

theorenr 3.7 ard.

thc

rerrrarr< 3.8,

if

&-

is

free rerated

to fm V and naxirnal with this piop"rt1,, then,

rve carr

co¡struct

the vectors Because

Ytt),ytzl, the

vcctors

...,yt,;t, ytgt, which forrn

p

=- l,

2,

a

basis

for the

subspace

frn

\7.

"....,0i

belong

Io yl&, Rl,

thcy may be rvritten as a linear

combi'atiå,,

ór

l¡å. "";to;;"r,,;r, .., &q,w'ich

means . . .,

q (matrix that there with tn exists

rows

a matrix e:

(gu,),

q-: i, ;',':..,,¡n; t:1,2,

and. q .oiirrrrr,À¡

iã irr"t

,nl"-îurr" ,

YtPr

:

Ënu, o,,

Ê

: l, 2,

. . .,

rn

(6

l) Having in vielv

the_

way the

vectors ytß1, p

: L,2, ..., Ø, have

been

construct

(see

remark

3.7)

we

cao assert

the fact that

dlBr

e {_ 1,0, l},

tor all

9

: 1,2, ...,*; í: t,Z, ..-.,q.

considering another paft (g',

a,¡

of free maximal sets rerated.

to

KerT\

and rmV resoectiysly, *e obtain anothe¡ b;q;- ?;,;

p

: l, 2, ...,tñ,

lätä:

subspaËe rm V-

ior which

nve

tå.,r",

u""ording

to id rl oiotu:*r

'^:;:

(8)

I

I

l

I

i

70 DÃNUT MARCU 14

r.Di\rx,r 6.1.

Ij Q

ønd'

dl

are

tuo

møtrices a.ssaciøted

to

tke þqß¿s l/fØl , P

:

1,

2, ...,fn,

then, tkere exists a. .squ&re ma.tr'ix

T,

so tka.t

õ - lQ

det (l) : *1. -

Proof

.

'Writing

/tßl

¿5

a

combination

of the

vectors ytOl

,

we obtain :

yrsr:Ét*)zrrr,

p

:1,2,...,t/1,

(6.2)

Y:I

where

I :

(1r,") P

: 1,2, ...,lli, ^(:1,2, ...,1/i is a

square

matrix with

elements

i" {-1,

0, 1}.

Now, writiug Ytßì as a

combination

of the

vectors

yt0l

we

obtain:

15 FREE SETS ASSOCIATED TO A FINITE ORIENTED GRAPFI

77

irøt

ønd.

where ¡:

(I'r")

y: 1,2, ...,1ñ; u.: l, to l. From (6.2) and (6.3) we obtain:

,n

irsr -

1:1

5^ r," fl,"r*,) å(åu'" t1"Jyr"r,

(6.4)-

Proof

. I,et us

suppose

that the set

{o,,, o,", , . ., ø,_}

is free

related

to Ker ¡

and. .maximal

with this

proper,ty. According

tä tne

remarks 3.7

and 3.8

r've

can construct a

basËs fro_rn

tþe

subspãce

il'v, ;;t"g th;

set

4'\..{ãt,,at,,...,at^}, who is

free related

to fm'V and rnaxirn"i*itf, ';

is property.

r,ei

us äor.sid",

õ tn" matrix

associated.

to this

bases,accor- ding

to

th-e. procedure described

at thc

bcgining

of this

paragraph.

.

According

to,thc

lcmma 6.1.

it

cxists"

u íqu"r" -Jt.i*-r io that:

õ : ro and. det (t) : +1.

(6.6)

Because

t) = lO, then,

rve can write :

.

õr^,,,,...,,n¡t

=

det

(f)

Ðp,,,,,.

..,,it.

(6.7)

Buï,

-havi'g in rnind the way the natrix õ hr.

been defined we may assert

that:

to.

11

s+i.

ol

s"

:

i r, if g: i, I: 1'2,'",

nt'

which

rneans

that

(developing accord.ing

the

diagonal line)

õrn,,^,,..,r_1

: fl.

(6.g)

F'rom (6.6),

(6.7) and (6.8) we obtain:

Ðu,,t,,...,r_¡:

fl. (e.E.D). I,et

us srlppose now

that

the set {o,,, o,,, . .

.,

a.r

} i,

,roä free related

to l(er I

and maxirrral with this property, rn"t"'ti'ot implies that

there exists

X: D *,, n,,= Ker 4, nonúll,

so

that

(see

the

rcnarr_

4.2 from

[17])

[X¡Vr9l] :0, for all

p

: 1,2, ...,/n. (6.9), Rewriting (6.9)

r,ve obtain:

lil l. j ,tL ill

0: lxlvrrjrr :

lÐ x',e',1Ðnn

',]-Ðx¡

dùst,:D.cùp,,x, ,

v

'( \1/-tî,

l",Yt"l, y:

lg"

l"nYt"ì

DD

*fl

1,2,

. . .,

ûfi,

(6.3)

2,

. .

,,

ln

; is a matrix

similar

Becatrse

the

vector5

lft9l, I : 1,2, ...,wi are linear

ind.epend.ent, then, accord.ing

to

(6.4)

we must

have :

É"u'r'":80,:{f il I:"'

(6.s)

y:l

10,

if þ * ".

F'rom (6.5)

we have: 1-Jclet

[(80")

f3:1,2,...,1ñ; s.:1,2,...,rn1 : :

d.et

(ll) :

det

(l)

d.et

(l), which

does

not

rnean

anything

else

but that det (l)

and.

det ([') are concurently equal to 1 or - 1.

Consequently,

det (l) : ¡tl.

(Q.Iì.D.)

Rervritirrg

the relation

(6.2) rvc obtain

, fõ,u,o,: ?tsl : Élurltvl:

'ui | (r

t:t f-*

: å t- a,, o,): å

rB"

o,,)

ø,, rvhich teads

to õs, :

å re, oy

,

i.e. õ: to.

(g.E.D.)

We

d.enotê

by

Øy,,t,...,r*l

u

subdeterrninant

of the rnatrix f), a

sub- dcterrninant made

up with the tn rows of Q and the

columns t1, t2, . . ,

...,t;ofÇ1.

rl*rnc,r.rì.t

61. If

the set {o,,, o,,,

..., q*) is free'

rela.ted' to

Ker L

and'

maximø|, aith' this þroþerty,

then,

Сt,,t,,....,t,)

: !1,

ønd'

{o,,, atr",

..., e,;)

isnotfreerelated,toKerT\ øndmaximal'wi,tktkisþroþerty,tlren,Ø¡t,,t",...,r¡):0'

the relation (6.l0)

represerrts a h

with

ut, urrl<n'orvn'quäntitcs (the

But, as not all the

unknown

that the

vector

X is

nonull)

it

rnea

ad.mits

a nonull solution fáct that

det f(OB¿-)

9: l, 2, ...,m;

i,

:1,2, ...,nil:

Ð[,,1,,. ..,r_t

: 0. (e.n.n.¡.

Re

m:ar'.,k 6.1.

rf

(g,

a¡ is a'pair of free

sets,

naximal

rerated. to Ker

I a'd rir. y

respectiv"iy,

ir,""iãocording-tã-iii" i"î"rr. 8.6

we can

þ:r,2,.

7lL (6.10)

(9)

72 DÄNUT MARCU 16

constfuct

the

vectors XLq),

d.: I,2,...,

À which

fofm a

bases

for

Ker¿1

and we rnay

associated

to it the matrix 9* : ff)ir) -" :1,2, ...,h;

t:1,2, ... q; sirnilar to the rnatrix Q. Denoting by

Ð1,,,,r...,,nt

^ subd.etelninant

of O*

(subdeterminant

mlde.up-with

\he.

h

rows

of

O*

ã"ã-tfr"

columns

tl,

tz, . .

', ta of

C)x) we"

obtain, by a similar

resouing

to

that prcviously

expounded,

the following

theorenr ;

rii'olc¡;tul 6.2'

tke set {o,,, o,,, ' '

',

q

h} is frtc

rtlale

d lo ¡rr V

ønd

ma.ximal,

uitk this

þroþerty, th'en Ðþ,,4....,t

nt: !1,

a'nd

{o,,, a¡", . .

., a'r}

rna.ximøl

uith this þroþcñy,

then,

<gL,

g> with

"-Y¿

:

{nr, rrz, ns, ,/&4, ?t5,

(nr,

rcr.),

ds:

(tu2, ns),

&¿:

(ns,ns),

tua, /11),

ar:

(m",

nn), ør:

(nu, nn)

et ï : {or:

Ur,,

&u: Ur,

flz

: U, Ker 7\

and

maximal with this

pro-

A4:

Vs, &e

:

V¿,

A,s:

V6,

erc:I,/ß)

I with this

property.

is

those obtained

paper and

[16]

iu - tl8l [1] - [13].

representMore

a theory in the

þarticulør case ult'en

d

tke grøþk

U6l - [B] is

not we necessøry consid,er aud connected.d.eve-

ecome nat:ulral conseçluences

of

lvhat

"i; Tl"i,:i'"ii"r* å?,'i :ii åî1,1

y iÎ I is a

sþønning tree

of G.

(see

[l] - [13]).

Sirnilarly,

a

set_8.

is to Im!

and

maximal with this

property,

anð' onlv

if

&

is a

otree-of

G'

(see

tll -

t13l)'

Moreãve-r, Ker

7\

is

the

sþøce

of_c1t V t!"

sþøcc

of

cocycles. (see

tll - [tá1).

rndeed.,

from

116]

a

results:

dirnl(er L:q-þ1-s,

where .s

is the

nrrmber

of

connected components

of G,

Hence

dirnKerA:ulGl,

rvhere

Så. v[G] is the

cyclonr'øtic^number:f

G'

þee. [5]).'"

-

.

"""*¿ins to

remarks

3.6 and 3.9 we

obtaiu

: if t

is

frec

related to

fãt n

and' "rnøxirnal

uith

tk'is þroþerty, tken

l8l : rank

(Â) ;

if a

is free related.

to Imv

ønd ma.xintøl

uith

this þroþerty, tken

lgl :

v[G].

17 FREE SETS ASSOCIATED TO A FINITE ORIENTED GR,ÀPI{

7s

But, if

G

is

connected, e,g., s

: l, then,

accofding

with [16], it

results :

lsl:þ-r,

e.g.,

Similarly,

E.

is a

spanning

if

G

is tree

connected, then

of G.

(see

tll - ilgl).

lal :u[G] :q-þ+1,

e tll -

[13]).

t16l - [18] and this

paper,

if

G

tree is free

and.

maximal

related

ue.

(see exemple

7). Similarly for

a

graph G

is not connected..

ecessary

a

general

theory

when the

,

9. ,opened, problem.

A

research

co'cerning the rink

between the free sels (introduced

in this

paper) and

the

ind,eþendent systems

from

matróids theory.

I{EIlERENCBS

tll

A

[2] B [3] lr

rderrne - Ehrenf est, T., De Bru jin, N. I.incar graþh.s. Siruon SLcvin pB, lg5l. G., Circuits and, tt,ees in oyicntcd ott, _Iì..,_l[ayberry, J. p., Matrices aød lrecs. Ecorrornic Activity Analysis, New

York,,Wiley, 1954.

[Z] ? " rrr_b_i t, J. J., On trecs rsf conncctcrl graþhs. L¿tvion Mailr. flearbook, lg65.

!9] G " u I d, R. 1,., Gra,þhs ctn.tl. Vector Sþales.- J. Mailr., phys., JtÌ, 1958.

[9] Gniller'in, E.4,, Introdtt.ctory Cîrcuit ihrory. 3rom" Wley & Sons, I'c., New

York, 1953.

[10] Kirchhof f, G., mgen., auf uelche m.ø.n l¡ci d,erlJnter- sucltung der y" Strome geÍuhyt uird,. .Lnnalen det Physik un<l

[l] Ptecival. \\¡., I

rz¿¿s. proceecìi'gs or trre nrstitute o, ,r..rlrl'#oß:rr:lr"K::'i"{rrTi,''íKä|n*t [2] s e cl I a c e k, J., I;ûúte. graþhs anrt their sþattning rrccs. Õ?r.pir-ir"pèstovani mate-

matiky, 1967.

[13] S e s h rr, S., l{ e e r], M. l\., I'ittear graþhs ønd el¿clrical nelaorhs. I{eatling, Adclison- Wcsley, lg6l.

[14] Arglriri gicir,ã rioard (vot. l). Editura Dj<tacticá çi pedago- lll] S_. e a n g á, çi pedagogicä, Bucurcçti, 1920.

[16] M a r c n, l). ie Catcõlu's oj the Nu*nber oJ Can_

necte ,¿8, /¿. Sturìii çi ô.ercetãri Mateiratice,

2, 1976.

L4 t5 t6

ll l

ll

B B

(10)

I

I

74 DÄNI-TT MARCU' 18 DÍATIIEMATICA

_

REVUE D'ANAI,YSE NUMERIQUTI

ET DE TI{EORTE DE I,'APPROXIMATION

L'ANALYSE

NUMÉRIQTIE

ET LA TTIÉORM DE

L'APPROXIMATION TOME

10,

I¡o

l, lg8t, pp. 25_29

[17] M a r c u, D., Considerations Concerning Certain Vector Sþacas Associatcrl to the Orienteil Finite Graþhs. Stuclii çi Cercetäri Maternatice, È{1, 4, 1976.

flB] Marcu, I)., On Certøin Vcctor Sþaoes Assoaiaterl to lhe Oricnled Finite Grøphs, Analele Univcrsitäfii ,,AI/. I. Cuza" clin lagi, 25, 1, 1979.

Ræeived l. XII. 1980

Faculty of Malhemøtics

U nia er sily of B uohør e s t

Acatlemiei 14 r

70109 Bucharest, Ronrauia

SUFFICIENT CONDITIONS OF UNIVALENCY FOR COMPI,.EX FUNCTIONS IN THE CI,ASS

C,

by

PDTRU 1'. MOCANU (Cluj-Napoca)

1' Introductigl Tn"

follorving. sufTicient condition

for

univalency of

an analvtic

T''IEoREùI

fu'ctio' A. IÍ D in is a

convex

a

conuex d.omaiø

äomairr is in well

the

r."i*"

comþrex

l2l, pùne t4j:-

t,'ønd,

lii:"'

if f is

an ønøIytic function

in D

suck

that '- --- -""'Ì

(1) Re/'(z) ¡ 0, for

a.tt

z e

D, then

f is

uniuølent

in

D.

'Ihis result

was generalized

in [l] and [S]

as follows:

I] If

_{

_is. in ø

domøin

D

ønd.

if there

exists øn

*n

n g which

is t

and conuex

in D

(i.e. g(D)

i, ; ¿;;";;

do

th&t

(2) ¡¡qlll ¡ 9, for øtt

z

e

D,

e'(:) then

f is

uniuq,lent

in

D.

conditions

of

univalency

similar

to

the

class C1. These conditions yield.

ism in the

complex plane.

L:,

Ltons

we u:

say r(e that'.;he

/ anda function/0"r.;î.;r"""r:::1 : Imf ,::rr";: r:::

of the real varíables

r

and

1i hau.

continuous

{irst order pärtial derir,.iív"s il b.

Referințe

DOCUMENTE SIMILARE

The purpose of this note is to prove that for each finite family of single- valued or multi-valued operators satisfying some Meir–Keeler type conditions the (single-valued) operator

The averaging theory is one of the most powerfrrl tools in approaching problems governed by differential equations, The goal of this note is to present a theoretical

I.l.tt lls lÌo\\¡ cousitler a, plane, incornpt'cssiblc ltotontial inyiscirl fllid floÌ'.. L'ollt'olscl¡', ant ltolornolpìri c function in a gìven durnaitr crt¡lcl

Temperature field (x - the direction of laser beam propagation, y=0 mm) inside the Au bulk target for a single pulse irradiation with a duration.. of 10 -13 s, and a relaxation

In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and the edges represent the chemical bonds.. An independent set of a graph G is a set

The energy of a square matrix associated a graph is defined to be the sum of the absolute values of average derivation of mean of its eigenvalues.. The energy of adjacency matrix of

The Hosoya index of a graph is defined as the total number of the independent edge sets of the graph, while the Wiener index is the sum of distances between all pairs of vertices of

The Dope Sheet View is used to visualize motion tracking data, it is implemented as separate view of the Movie Clip editor just like the Graph View. It displays channels for