• Nu S-Au Găsit Rezultate

View of On p-derivative-interpolating spline functions

N/A
N/A
Protected

Academic year: 2022

Share "View of On p-derivative-interpolating spline functions"

Copied!
8
0
0

Text complet

(1)

148 Costicã Mustãþ t2 REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORID DE L'APPROXIM.TIION Tome XXVI, Nß 1-2, 1997,

pp.

149_163

I{EFERENCES

l.

p.

Blaga

I splíne of even degree, stutlia univ. "Baboç- Bolyai

2. p.

Blaga,

spline techniquefor numerical solution oJ

cletayBorlin,ProprintNo.A-15(1996)'Serio

A-Mathernatik'

3. R.

t.

Bruden and T. Douglas Fa;xæ, Numøical Analysis, Third Edition, PWS-KENT Publiúing

4 G i'{:{:"::i"

Received May 15,

1996

"Tíbefiu Popoviciu" Institute of Numerical Analysß P.O. Box 68

3400 Clui-NaPoca,

I

Romania

ON p-DERTVATIVE-INTERPOLATING SPLINE FI-INCTIONS

RADU MUSTÄTA

Following the ideas from [2] and [3], we defîne thep-derivative-interpolating spline functions which can be used to approximate the solution of a differendal equation of orderp

(p eN,p

>

l)

with modified argument,

Forp:

1 one obtains the spline functions considered in [2] and [3],

Let

Ân

:-æ = t_l 1

a

=

t0 <

\ <...1

tn

=

b

<

tn*1

=

be a partition of an interval

la,b] c

R.

DeFrNIrIohl L

For n) l,p ) r,m)-2,m 2 p

givennaturalnumbers such

lhat m+ p < n+Z,afunction

s:.R

-+

R satisfyíngthecondítions 1)

s

e

,z'n*t-2(R),

2)

slre

I Q2,n*p-t,Io =

lto-r,tk),k = 1,2,.,.,n,

and

3)

s

lr,, ,1r,.,

. en+p-t,Io = (t-t,ts),

Ir¡1

=

ltn,tn*t)

is called a spline function of degree 2m +

p - |.

Here p, denotes the set of

all

polynomials of degree at most r.

The set of all spline functions of degree 2m + p

-

1 is denoted

by

,S2,,*r_,

(^,

) .

-

-

Remark 1.

Forp:

I one obtains the set

^t

,(^,)ofnaturalpolynomial

spline functions of even degree 2n considered in [2] and t3l.

The following representation theorem

will

imply that the set ,S2,,+p_r (4"

)

is

an (n +

p +

l)-dimensional subspace

of C',*o-'(R)

.

Tgeonpu

2. Every element

s

€ Sz,r*p_l(A,,,) admits the representation

m+p-l

n

(r)

s(r)

= I 4t' *ZakQ - ,ù?Ï*o-',

i=0 k=0

AMS Subject Classification: 65D07, 65L05

(2)

Dorivativs- Spline Functions 151

I J

150

where

a)

(s)

Radu Mustãþ

Proof. Taking into account condition 3) from Definition

l, it

follows that

s('*e)(/):0 for

all

t e1,*,,giving

nil

0

= i

(zm +

p -r)'.'(^ *

p

- t)a¡(t -'k)î't = *}ooft - t¡)m-|

=

k=0

k=0

n (nt-r \ ¿'-t ( n

,jl.r,_l_r

= M; "olïc!,-{m-i-\il= u2?t)i ci-rlZoo,í

),"-'-',

oã t;- ) i=o

\¿=o

where

M::(2m+ P-l)".(m+ P-l).

, The above equalities imply that

å aotl =

0,

for i =

0,1,

"',ffi - l'

tr

Tneonnv

3,

Let (l eN,03q< p-l

and

let f :l?+

'R

beafunclion

v er ifyin g th e c on diti ons

í

f@0,\ = vlf), I =0,1,',., P -1,

(3) ll')i,-i = yf), ft =

o,

r,...,n.

Then there exists a uníque splinefunction

s,

€ Sz',*p-r(À

,)

such that

["!r)1ro¡

= yf), I=0,1,..,,p-1,

..

(4) lú't,rl =vf),k=,,r,"',n'

Proof.

Since the spline function

s,

admits representation (1),

it

follows

,f)(,) ='.1^^ +

Ao, rtk

. ä##.ao(t -

t o)ù''*

rt-t

for

q:0, ' l,

.,., P.

Imposing õonditions (4) to this function, one obtains the system

Zrorto =0, i =

0,1,

"',ffi-\'

yf),q=o,Pl

(2m+p-r or(t¡-rr)'i" = y(i'), i =o,n

2n - t)l

withþ + n+l +m)

equations

andm+ p+ n+ l

unknowns:

lo, "',A,,*p-r,

Agr,,,r(In.

"

Thó systern (5) has aunique solution if and only if.the associated homogeneous system

(rf) =0,q=0,1,.,.,n-rrrllù -0,i=0,t,...,n)

hasonlythebivialsolution'

Dànoting by s a function

in

Sz,*o=r (À,

) verifiiig

the homogeneous condi- tions (4) 1i.e,, s(u)(lo)

:

0,Q

=

0,

p - l;r(')(t,,) = 0,k = W),and

integratingby parts, we get

Jt ["t,,.o1

qrr]'a,

= !- (-Ð,

r,'+p+r) (r) "{

"*r-r-r) 1r ¡1"' +

+(-rf'-t

J', r{z'*r-t) ¡r(r..1)

(/)dt,

Taking into account Definition 1, we further obtain

J'[,('*o1,,¡f'a,--(-r)*-'Ðrl;',,t'**n-r)1r¡,(z*r)1r;or=

=

(-r)^-t

I'l-, r(r*1)1r¡or =

(-,)'-tÉ"o[r(o)1,0¡- r(o)1,0-,¡]=

o, wlrere

cr - ,(2'*t-')(r)lr-, k = l,n

lt

L

Itfollows

that ,('n*o)(r)

=

O

for all t

elto,t,,f ,

Since

s

e Q,rrp-t on the intervals 1o and /61, we find ,1tu1"ú"+l)(l)

:

0, for all

t e

IoU 1,,*,, too, so that by the continuity we get

"(rz+r)(l) = 0, for

all r

e 1ì' The equality s('ÉP)(Ð

:

0, for

all I

e R, implies that t(P/

e4n-7

on R. Since

,(r')(lo)= 0 for k=0,1,...,t1,

because

m3n+l

and

l< p<n-nt+7,it f"il;#

"(r) : 0

<¡n R. Now, using the condition, u(n)(lo)

-

0,t7

=

0, p

J,

we

obtains=0on,Rand,consequently,allthecoefficientslo,'.',Am*p-l,av"',an in (l)

are

null.

Taking into account the linear independence

of

the flinctions

{t, ,, . .

.,t''*o-' ,(, -

,o)1''* o-t

,... ,(t * ,)1^.l-tl],

it follows that the system (5) has

aunique solution, o

An immediate consequence of Theorem 3 is the following

COROU,ARy 4. There exisls a uníque subset

of

n +

p + I

splinefunctions {ss,s1,.'., Jo-rr 50, Sr,...,

S,} c

Szr,*p-r(Â,)

s a tisfying the con clitiott s

n

k--0

n

Zt¡|=o,i=o,m-l

(3)

r52

(6)

Rarhr Mustãfa

)=ô¡qi 8,i = o,p-l )=o; j=o,P-l,k=1,n,

4 5

is null. Indeed,

Therefore,

Then the inequalitY (17)

Splino Functions 153

o <

lls{'.ot -

",,,.,,111

= lolrr,.^(r)- s(,.r)qr¡]'ar

=

: f [r1'.,,1r¡]'.rr - f [J" 'rir¡]'o -

zlo

r("*o)p)[s(".'){r¡ -

rt'-'o)1r¡]ar

and,respectively,

r,¡

(7)

Js[o'(to)

=o' Q=o'P-r'k=r'n

fs[o)i,,¡ = o"; k,i = o,n

.

IÊt -f .

C(n)(R) and

^S :

"tr)1r)

-+,sr,,*o-,(Â,,)be the spline operator defined

by,s(fl :

sr,

Obvi-ously, the f,rnctions J0, ,tl, . .,, s

p-b

S0, S1,.,., S,, defured by (6) and

(7) form a basis

of

the space

,Sr,*r-,(^,),

Therefore,

tlt^

the representation .p-ln

(B) "r(r) = |'oUY@(¡o)

+

Z soQ)¡@Q)

'

4=0

k=0

In order to study the properties of the space

^Sr,*r-r(Â"), we consider the notations

W{.p(L,),= {g:la,bl-+ R,r@*r-t) is

abs, cont. on

Io, k = þ

anrJ gbn*ù e

\la,bl|

Wi'.p(lo,r]):= {s :la,bf

-+

R,g1n*rt) is

abs. cont. on[ø,å]

and

gtu"ù

e

\1a,fl\

wi;o(L,,)'= {, ew{-p(d,,),g@Qo) = f@þo),k = ou}

(r2) wîî,'(A,)'= {r ewi'}p(a,,),g(o)(ro) = ¡k) (ro),q=o,p-l

THEoREM 5.

If s

e ^Sr,,*o_,(A

^)ìWi:,'(L,),

th.n the inequalíty

(13) llJ'.''ll,

=

llr''.''ll,

holdsþr

every

g eWii,P(L,,).

Proof, Observe that the last term of the relations

'Í)(',

'l')Qo

I

I

i

, = f r('.r)1r¡lr{".n)(r)-

,('.n)1r¡]or =

= Ï(-r)'r('.r.i)1r¡[r(n+r-;)1r¡ -

r(m+r-r)(tl]l;=:

.

j=o

*(-l)''-'f ,(z'.r1)(r)lr{r.r)1r) -

"r,'t)1r)] or

6o¡ "(2,r+r,-r)þ)

= rt,"rr)(ó) = 0, j = 0,*-Z,and

s(2'*p-1)(r)

= c¡, k =li,

(e)

(11)

r = (-r)*-tÐ.t

,,Q^+r-r)7tt[sk.t){r)- ,(r*t)1r¡]ar

= k=l

--

(-r)*-'Ðr"olrþ)Qù-

,(o)(,0)

- (s(o){,*-,)- ,þ)00-'))] =

o

It follows

o

= llJ'.''ll, - lltt'".''llr,

which is equivalent to (13)' o Remark2. From the proof of Theorem 5 it is clear that

(r4) llt'''.''ll, = il'f

.'il,

+

ll/{'.or - 'y'.''ll,

for /

e Wì'*o(L,),imPlYing

(r5) il'f.'ll, =ll/'"."11,

(16) llrr".ø -'f.''ll, = llr''.''ll,'

THEoREM6.

Izf I eW;'*o(L,)

and

€ Sz,,*p-r(A,,) btgtvubyTheoretn3'

llrt".,r - "f.,,11, .

llrt".a - r'".''ll,

holds

for all s

eSz,,*p-r(Âu)

(4)

t54 Radu Mustãþ Proof. The last term of the identity

is null. Incleecl,

obt¿ins

Therefore,

implying(17). o

I. APPLICATIONS

In the following we shall use the spline functions in the solutions of Cauchy problems for differential equations

oforder p(p > t).

Consider the Cauchy problem

6 7 Dorivative-interpolating Spline Functions 155

llrr,.or - fr.^ll',= f frt".,r(r)-

s!,.o)1r)]'ar +

*f [rt".,, - ,t,-o)]'o t +

zlb fr{,.o)1r¡

- ,!'.,,(r)][r!".,)1r¡ - tt'.o)ir¡]or

and suppose that the conditions enstuing the existence and uniqueness of the solution y of this problern are fulfilled (see

[

]),

From Theorem 3 one obtains

TnBoRBvt 7 .

If

y is the exact solutíon of the problem (P), then there exists a uníque splínefunction sy

Sz,n* p-r(A,) vertfying lhe condilions

a

lrÍ,"0r) = yb)(ò= nq,

q

=o,p-t

(18) {;,

/-\

\ /

['f,(r-) =yþ)Q), k=0,n.

Consider the notations

,, = Ï[s{".n)1r¡- 'Í.,,0)][rP.,)(r) - ¡{'.òçt¡þt

=

= Ï(-r)'["('r+r+r)(r) - sf*t*i\çt)]["Í.'-41,

¡

-

yØ+n-i)(rl]ll=:

.

j=o

*(-

Ð''-'

l"' [s(2".n-r) 1r¡

- rf'n

o-ù

çtl]l'f ."

(,)

- rtør)

ir ¡]or

and,

since

(s('*r*.r)

- rf'.e.r))1ø) = (s('*r*i) - ,@*r*i'Xu) =

0,

i =

0,m

a

and

,(2,,+n-t)(r)- ,f'*r-r)çt) =.¿(r)

(consrants)forall

t

e

I¡,k = t,n,one

tv\) =

vo;

v(q(t)) = lr,

(1e) \__.,

{

[#,t+l = f(tr,twr*),

Using Corollary 4, we obtain

Turonnu

8.

If

{ss,rr, ,. ., so-r, S0, Sl, . .

.,

Sr} , the basis

of

S2,,*p-r(^,),

,r

gíven by Corollary 4, then the spline function s

y

e S 2,n* p_1(L

^) given by Theorem

7 admits the representation

(20) ,r(r) = f

,oQ)*o

+f so@¡(,r,ro,ro).

q=0

k=0

We call the spline function s, given by (20) the approximøte spline. solutíon of the problem (P).

Tsnon¡u

9.

If y

e ÍTi*Pla, bf is the exact solution of the problem (P) and s, rs its a¡tproximate splíne solution, then

(zt)

llr(''.o-'l - ,t".'',ll- < .[^(r,-

l).,,

(* - ,+ t)ll^,||'iil ,'".0'll, t =

2,3,.,.,n;ll¡,,11

= mu*{r, -t¡-t,i = þ}.

Proof.

Since -v(')(1,¡

-

r{,")(r,)

=

0,

i = O¡,

Ay an application

of

Rôlle's theoremwe obtain the existence of points

t!t) u(t,,t,,r),i = 0,n- l,

such that

,tr.t)(r{'))_ rþ.')(rf')) = 0, f

= õ, r¡

* l.

Applying agailr ltôlle's thec:em, it follou,s that there exists

/"'-r)

e

(t!*-'l

,

r!:';'))

,

i=0,n-m+ l,suehthat

k=0,n

k =

0,n.

4 = (-1)"-'i+(')(["i'Qo)- t@)u)f- ['f'{'--') - l@Qo-,)]) =

o

k=0

ll,{, "r) - l^.

rll,'o=

ll,(,.,)

1, )

-,?'

* u) (,,11;

- il,f

.

ù

Q)

- /,'. ò

Øll'o,

S2r,+ p-tto aPProximate with inodified argument

(r

/(')(r) =

l'(,,y(¿),

y(q(r))), t

ela, b)

yk\@)=fttn,Q=qp-1

<p:la, bf

-+

la, bl

(5)

)- r!',oon')(,t' 'l; = o, r

=

br, -;;i

9 Spline Functions

We obtain, in general,

r:21

3, ..,, w, E

Remark 3. For

r:

m orre obtains the evaluation

Similarly,

llr'-'',ll-

< @

-o)'llv"-'';,

ll-

lþ(,,.o-,1

- s!,-r'rll_

=

J^(^- r)...(, -r +r)lll,,ll'

ållr,'.,,11,

157

156 Radu Mrrstãla 8

,l*+ø)(t@-r)

þ,qi

-'Ío)l =

¿il¿"¡¡,

¡ = 0,,, -r.

It

follows that

for

every

/ elø,bf

there exists Ío such ttrat

þ- 1f'-t'l <

orlln"ll It is obviot¡s that

and, consequentlY,

The last inequality from above follows

fron

(16).

Therefore,

(n) ll,t'r-,y,ll-

=

J^(*-r¡r¡¡a,¡¡'-llþ''."'ll,

CoRolreRY

I0. The inequalilY

e3) llr-,,11. <çr-o)o Jm(nr-r)rllr,ll''-i¡¡rr'.'r¡¡,

holdsfor every

y eWl'*ela,b].

Proof. Vy'e have

lr(,) -.,;(,)l =

lJ,

t, f, -

s', (a))oøl

= þ

-',llþ'-'',ll-

<

þ -o)llv'-'',ll- lr(,.r-,)(r) -

r(,no r-1)(tl

.

lJ*, 1r{".,)(u) - rt'.,,(r)þrl

l l

t,

.l ri

1l

. lü,,*lt lft, çra'.,)(u)- s!".')1,¡)'u,l'

=

= ¡r,,"4ft -,,(tþ'*o)çu¡ - sf;'.')çu,)'o,lj

=

= .Fli{l[ (y('.')

(il)

- s!'.') iø)' o,l:

=Jãll^,,

il;

il/'".n'

ll,

llr{".'-'r -,lr'.'-"ll* = J'¡a,¡¡ållr''."'11,

.

Sinrilarly,forevery

t elo,ó]wecanfurdaninclexiostrcfrtfratlr-{j'-'ll<ir-f¡+,ll

so that

lr(^.

u,)

(t) -r('.rz)

i, ¡l

.

lJ;,, (/(,.

n -r) @)

-r!".,'r ir¡þul .

<

llr{".o-'l -,y.'-',11.þ - 4'-"1

=

J*(*- r¡¡a"¡¡"*þ''.''ll,

for

all t ela,ó],

implYing

llt{*.r-zl -

þt+P-z)

ll- = tt, - r¡lla,ll1.ållr,''.,,11,

and, finally,

ll, -',ll- <

- ò'llr"'- "fr'll-

Now (23) follows

homQL).

o

CoRorleRY ll.

The relatíon

(24) ÉlËjr'*'-'Íi'll. = 0,k = P,P*1,,p*m-2

hold.sfor every

y eWi'*ela,bf

.

Proof.It

follows immediately from (21).

Now we shall show how the above results can be applied

to

obtain the approximate spline solution (20) of the problem (P).

Denote

(6)

Splino Functions 159

Radu Mustãþ

l0

11

158

Qs)

p-l n

14,,:=

ry(/¡):= >ro(t,)y(o)(¿o)* Iso0,),r(t¡,!r,yx), i

= 0,n

9=0 t=0

p-l n

w, := ^s,,(e(r,))'=

I

r,(.p(/,))/(o)(ro) +

Iso(e(r'))/(ro' !*,tr)'

q=0 l=0

(26)

p-l n

*i = 2,

n(t)ma +

>

sfr

(rr)/(t¡,

w r,,w

¡)

+ E t

Ço

&=o

p-l

n

ø,

= [so

(<dr, ))zro

n I

so

(,(

t ¡))

f

(t r, w ¡, w

¡)

+ E

¡,

Ço

,k=o

i=0rn

where and let

e,:= e(t,) --

y(t)- rr(t,), i

-- 0,1,".,n

",t= u(,o}))

=

y(q(t,))-

'r(e(r,)), i

=

0,r,.'.,n

denote the deviation of the approximate spline solutions, from the exact solutiony of the problem (P), on the knots t, and <p(t), i

:

0,

I, "''

n'

Wehave

!¡=W¡*e¡

n

õf(tt ,\*,\*)

ôyr

ek

+ >sr(r;)

õf( 4,Er,wr) ê¡; i =

0,n

= Zsr(r¿)

Øn

k=0 k=0

E,= f;^ro(q(,,)) W+ù"¿ + is¿(e(r¿)) e¡' i =

/ç= 0

Supposingthatthederivativesoff(t,u,v)withrespecttou,vafeboundedonD,

there exist

Mu

Nr> 0 such that Yr wk

*e*

for

fr:

0, 1, ..., n and the system (25) can be written in the following form

of(tr,Er,qr)

3 M,,l*+\3 N,, k =

o,n

Øt

P-l /\ n

,r¡ = ïsq(1,Þ(q)(/0) * I s¡(t¡)f(+,'tvk

+

ek,îk +

ek),

i

= 0,1, n and, taking into account Remark 3, we deduce that

4 = o(lb,lr-å),r, = o[iln,il' ;),

consequently E,

-+ 0,

E,

-+

o,

for

llÀ"ll

+

o'

Now, neglecting the quantities

E¡, Ei, i =

O,n,we obtain the following system of 2n + 2 equations

wi=

8=o

k=o

n-l n

'f

"o1o{r,))r(ø)1r¡)

+ | s¡(r(r,))f

(tt

,w¡ * e¡,w¡

+ ao)'

q=o

k=0

i

= 0,1,...,tt

with

w,

and w,, i

:

0, 1, ..., txas unknowns'

If

the derivatives of the function

f

(t,u,v),

f

:D

c

R3 -+

n;(o c

[4, ó] x 'R2)

with respectto

u,

vare continuous, then

f

(to,w* +

e¡,fr¡

+Ak)=

f(tr,wr,wo)+ k+

af(tr,Er,nr)

p-l

u

4=O

t

p-1 q=o

,l

I

ir

õ-y* k)

,o(t

i)na * I so(,,)/(t

¡, wr<,

*r), i = o,'i

k=o

,t_

sn(e(r,))nro +

| so((r,))f(to,w¡,frt), i =

0,n

Å=0

\4tí

where (27)

Wi

min(wo, wo

+

eo)

< €* <

max(w¡, wr

+

eo)

min(w*,

wr

+

e) I r1 I

max(wr,wo

+

eo) rvith 2n l- 2 unknowns: w0, wys ",tYl'urfrùrî-vr, ' ' ', ì-r;

Consider the notations One obtains the sYstem

(7)

Derivativo-intorpolating Spliue Functions 161

12 13

160 Radu Mustãþ

"o(ro) rr-r(ro)

@,1

= rnl,,(e(,,))l *,'rils-(e(,,))1,, = t"Ì

since

llis

a continuous application of the compact convex

o

into itself, it follows that equatio n(29) has at least one solution W* e {ù'

Let IFJ be the following diagonal matrix 0

[']

=

"r-1(q(r6))

'o-t(e(r,))

o-')'

ro (,p(,0 )) 0

ôf

(tr,wo,frs)

õwo

0

f(t*wu,wn)

0

[r]

= õw,,

af(t,

,WOrW0)

so(t,)

s'(rr)

awo

[s]

=

so(a(to)) s,(o0o))

0 o¡(tn,wn,wn)

0 Aw

n

Then

,i

'W = (tu¡,w¡t...

tv)r,fro,frrr'..,frr)'

f (w) =

(.f (t o,r's, il6 ), .' ., f'(t

r,' r,fr

n),

f

(t

o,'0,'o

)'

"'' f

(t n' * n'

fr n))''

using

these notations, the system

(27)

can be written

in

the

following

form

# =tsllrl

rseoRBrr¡

" ull#ll=

is unique and can befòund'bY

g

<

I,thenthesolution

W* e d) ofequationQ9) the iterative Process

(28) We obtain Qe)

sr =lsfm+[s]¡(r)

ql = u(W),

W&).=

U(Wt*r11, k = t,2,3,...,

- where W@)

. (t

ís arbitrariþ chosen. Furthermore, thefollowing evalualion holds where H:Çù .->

a,H(W)=

[s]ru

+lsl\@)

and the domain ç)

c

À2"*2will be

ll*. -",',ll . ftrrr"' - "(''ll

specifiedbelow:

Let

u =

mao{lmoltQ'=g,',"',r

-r}

andlri> 0 suchthat

lf('o'*u'tt)l < r'

proof.It

is an immediate consequence of the Banach's fxed point theoretn' o

k = o,n.The

set

O c

,R2'*2 is definedbY

Remartc4

we *.

ll#ll . iltslllllt"lll

<

1 ir

and

onlv rr lltrlll' Ñ

(30)

n

=

I, e

R2"*2 ;W = (ro, w 1,'.', w n,fr

¡,frr,'..,fr u)',

V,l= ,f1,,(',)l+ ruilsoP,

)1,

,

=

q=o &=0

If

the norm of a matrix

ll)

=

(or),,,=,ø*, it

defined by

(8)

162 Radu Mustáþ 74 15 Derivative-intorpolating Spline Functions 163

wx=(iil,uÍlå,

\ ,=l j=l )

(,1 12 ,tl'

I

¡r"r¡ = [;( )'.åt )'Ju = 12,,+2M.,

REFERENCES

thÞn

l. [L Akça ærd Gh. Micula, Munø'ical soltttion of tlífierenlial equations of n'h order with deviating argument lry splinefuncÍbns, Bul. St. Udv. Baia Mare, Seria B, Matenaticã-Inlbrr¡aticã

vIJ,

l-2

(1991), 4',7-54.

2.P.Blaga, R. Goreltflo and Gh. Micula, Even degree spline techniquefor nunrerical solution of rtelay diferential eqtatíons, F¡oio Universität Berlin, Proprint No. A-15 (1996), Serie A-Mathematik.

3. Gh. Micula, P. Blaga and M. Micula, On even degree polynotniøl spline frnctions with applicatíons to nunterical soltttion of differential equations with relarded ørgilmenl, Tàrnisclro Hochschulo Darmstadt, Proprint No. 1771 (1995), Fachboroich Mathematik.

4. A. I. Rus, Princíples and Applicatíons of Fixed PointT'heory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).

5. Ma Tsoy-Wo, Classical Analysis on Nonned Spaces, 'Wodcl Scientihc, Singapore-New Jcrsoy- Lonclon-Hong Kong, 1994.

where Mo: mar {M t, N L} .It follows that llt"]il

.

Ñ

if and only

if

M 0 <

1

,lltslll

Received May 15, 1996 Facully of Mathenatics and Cornputer Science

" BabeS-B olyai

"

Un iversity

l,

M. Kogãlniceantt St.

3400 Clui-Napoca Rotnania 2. A NUMERICAL EXAMPLE

Consider the Cauchy problern

y"'(t)

=

{o) =t +;

"(i).),t

t),

t € 0,

rl

(P)

v'(o) = t y"(o) =

1.

Its exact solution is

t(t): "t'

Table 1 contains the calculated values of the spline approximating function on indicated points as well as the absolute errors (in the case Ìn -- 3, p

:3, n:

4).

Table

I

þ(")l

0

0.13ó.10-6 0,2025.10-5 0.?552.10-5 0.16234.rc-4 0.23442.rc-4 0.20762-rc-1 0.852. 10-6 0.44204.n-4 0.94542.110-4 0.104048.10-3

rr(r)

1.1 05170755 1.221400733 1.349851256 1.491808464 1.648697829 1.822098038 2.013153559 2.225585132 2.45969't653 2.718385876 x

0

1lt0

2 /10

3 /70

4tt0

5/10 6 t10

7 /10 8/10 9

ll0

1

Referințe

DOCUMENTE SIMILARE

The equations of type (r) have found applications in many fields, such as contror theory, physics, engineering and biology, therefore their numerical treatment

Hackbusch, Integral Equations Theory and Numerical Treatment, Birkhäusor Verlag, Basol-Borlin, 1995. Micula, Funclii spline Si aplicalii,

Hackbusch, Integral Equations Theory and Numerical Treatment, Birkhäusor Verlag, Basol-Borlin, 1995.. Micula, Funclii spline Si aplicalii,

Micula, On even degree polyomíal splinefunctions with applica- tíons to numerical solution of diffirentiøl equations with retarded argument, Technischo Hochschule

equatior (1988)' PP. Brunner, lution ojùútial-talues problems þt inregro-differential equation.r,. van ùer Houwèn, The nunrcrical solulion of Volterra eqtratíons, CWI

Micul4 Gh., Spiinefuutctions of higlter degree of approxíntatíon þr solutions olsystent of dtf.fer- entíal eqiatior¡s, Stuclia Univ. polynonial spline approxinatíott

Jump-cliscontinuil,y occurs in the I'ar'ious del'i- vatives oT tìre solution even if J'r9r Q a,le analyticin theil ar.gument's' Such jurnlrrìiscontinuities a,re

Conclitions leacling for ecluation (1) can bc found in Anselone and M yl,se and in phillips [9] for flre nonlinear problern.. tion of the cliscrete Galãrkin