:202
ELFNAPoPovIcIu
10-t,
%2 2,
l'ensemble d'es fonctions dans les définitions que nous avons aid.e des différences divisées enutili-
MAI.IIEMATICÀ
-
REVUD D'ANAI,YSD NUI,IDRIQUEEl'
DE TTTEONTE DD L'APPROXIMÀTIONL'nNALYSE
NUMERIQUEET I,A THÉORIE DE
L'APPROXIMATION'fome
B, No2,
1979, PP.203-214
BIBLIOGRAFID]
Aswþra unei
gene
noliuníi de conueri'(cluj)
vI'
65 -7Sn,-u'"
gén'órøtr
s fonctions aonueres, (1e5e)¿ii-
"ihi'o
nøtematicd çi legdturø lor cu teoria s cotuuefres, Paris' 1945'ON A MODIFIED SECANT METHOD
by
II, A. POTRA
(IÌncureçti)
Abstract' Irr this p]l)er we apply tlrc
rnebodof v.
e,r.{.r-([4],
t5])to ttiã"riuày of th"-."iruirg.n"" oi'a-rnodified
secant method" We proveirr.i- lrt ríte of .otir'.,g.í"e of this
methodis of the
formReçú le 8. x. 1978.
SLr. Dorobanlilor 40 3400 Cl.uj-Nøþoco
Roumøni¿ cu(z)
:
iCt, + d -2
Hza.z-
dr)rvlrere
a, d, H
and'r
a;::pc;ilive
nuirrbers d'epending on,,theinitial
condi-tions. We
alsogirr. îituip-ã'ti*ut"' for thË
distaãcellx' - xxll'
n': l'
;, . .,
where(*-)i:, is [itt
sec{Llenceobtained by the
rnodified' secant rrrcthod andx* is its lirnit'
1"
Thc Intluotion
I'heorem,lhe
methorlof
Nonc]'isc:-cte MatlrematicalInduction, introduced
byin t
ncein
bYt6l. pos
the'l)'
.o(z)
-
r', ttt''rL(r¡:
o'1o"'1'¡"¡,U*'ï:i't;:jt:::"'
DEFTNTTToN
l.l.
Tttz fnnction- o>'. d'efined'oy T' is
called'ø røte "f
,on îrli"ti,--¡i ¡¡
søtisfies" the fotlo'øing þroþerties :(1) a
maþsT into
itself;
æ
t2) for
eachr e T
tke seriesÐ, t"(t) is
conuergent'204 F. A. POTRA
The
sumof the
above series, o(r):
following functional
ecluation :À.'(t),
obviously satisfies the(4)
z(0) :0 ! z(,)-.
No$', r,r,e can state
the Induction 'fheo¡ern
[4]IHEOREM
l'1. If
(5) z(r) CU (z(t':(r))' r)'
lor
each re T,
tlten(6) z(r) CU (Z(0)'
o(r)),for
eachr-7.
^-- -W"
shall
sketch belowhow
the method of nondiscrete mathematical<¡f
the
convergence ofiterative
pro- completemetric
spaceX into
itself, sethat
we can aftachto
the Pair (F,åï"?!itã,loo"'il,,itd
.a ramiiY or(7) x¡e
Z(ro),(B)
xe Z(r)+ F(x) e
t) (x,r) ) Z(a(r)) for
each re
T"llren the Induction
Theorem assuresthe fact tÍrat Z(0),* Ø'
On^tl-teotrr"ir1á"a
(8) impliesthat
each elenent \,o1 Z(0) is a fixed elenent o{ the"-"ñt"g
F \.ä. ¡'tgl :
E.rt
also followsthat via the iterative
procedttre :(9) x¡*t :
þ(*,), n :0, l, 2,
' '',
rË''obtain
a! sequence(*,)i-o
whlgh convelges -!o-"t
element x*e
z(0),.rr"h-tttut the
?ollowing 'inequalitiesare
satisfied:(10)
d'(xn¡r,x^)3 a"(r), rt:0,I,2, "
'(11)
d(x,,, x*)5
o(o"(zo))n:0,1,2' "
'.3 oN 4' MoDIFIED SECANT METHOD 205
Frorn
(10) one obtains the following estimates ofthe
distance between then' th iteiate x,
an'd'the ,,starting poinl"
xo:(12)
d'(x,,,x) 5
"(ro)-
o(o"(ro))'apriori
estimat proced'ure (9) afied
by
the factthe iterative
Procedure'Suppose,thatloracertainne{1,2,""}'^onehasalreadycotnputed
X1, X2, , , ,
., xr. If
(13)
xn-rê Z(d(x,,,
xn-')),thcn it can
easilybe
proved.that the
follorving ineclualityis
satisficd:(14) t\(x,,,
xå')3
o(a(d.(x^,x,-r)) :
o(d'(x,,,x,-t)) -
d'(xn' xu-1)'lhe
above estimatewill be
call'can aPos
tive
procedure(.c)) a
sequence(x*)i-o which
convergesto
alixedpoint
øxof'tir,
anclfôr.9a9hìø;
{0, 1,2''''-\theinequali-- lião 1ìo¡-(12) are '"o,,"', if for a certain ne..{l'?t?' ."'t}
thc condititn'(13) then for g¡is n, the inequality (ta) is
also lrr1liie d..tr'he above corol,l,øry
will
bethe
basisof the prof of tire'Ihcorcm
3.1,.cotrcerning
the
couver-genceof the rnodified
secãntrnethod, which will be
gi'rzenin
Section 3.2. Divided
dilferenccs o-[an
opcraÍor,lhe
notionof
divided. clifferenceof a
(nonlinear) operatoris
an exten- .sion of the usual notion of d,ivid.ed. difference of a function, inthe
same sensein
rvhich the F'r¿àUet d.erivative of an operatoris
an extension of the classi- ca1notion of tf*-ã.tivative of a function. 'lhis uotion
was introduced-by by
,t. sÞRcEEv[9] and ¡.
sc:trurDr [7]thod for the
iterativc
solution of the non-h
sprlc-s."s. iV"
shall denoteby L(8,
-iì) the ecl oPerators,from E into It t"et ¡ F,
anallel x
alnð' Y betwo
differentoÞFrNrlroN 2'l' A
bouud'ed'linear
operatorAe L(E'^F) is
calledI a di;ã;lAiffãi",r""
ofthe
operator/
on the-porntsx
a'.dy, l1:
I
I '{rs) tL(x-ù:[email protected])-f(Y)'
2
æ
(3) o(r):rlo(a(r))'
we
shalljustify the
nameof
,,rateof
convergence", givento the
functionco,
after stating the Induction 'I'heorem' '
-' i;l (X,
a¡'A" a complete rnetric-space.If
,4 is a subset ofX,
andx
an elernentàt'X',
rn,eshal1'c by
ct(-x,,4)the g'l.b. oI
th-c set.{d\r, y);
i ¿ Àl b"'
z'*'" shall
dõnotebv
U(1,
Ò,'l:
:11\* = X;
clcnrentof X,
u'c shal1 rvritefor
simpltcttyùþ, r) j,
,).I,et ih"'iot"trr"1 ]0, ro] of the
realline,
audfor
cachr
= î,- lel Z(r)
representa certain
strbset-ofX. We
sha11 usethe
follo- u,ingnotation'for ttt" limit
ofthe Íamily
Z(.).206
F. A.PorRA
4Iu the
scalar casethe divided
clilferenceof a luuction is
uuiq.ue, but. irr;h;;;;"t;
casethis
assertion is not true.r.et
us exanrine as an illtrstraLiouitr" Ë.r"
rvhereE : F : R2.In this
case, a nonlinearoperator/is
charac-;;ild
b),t*o
¡eal lunctions of tu'o realvariables/, and/'
i'e'(v)
ø:
(**',)=*', [email protected]) :(:;,:å'' .;"]\'
'lhe[
eacirof the linear operators,4,
and'4,
givcnb]'the
follou'irrg tn'o rnatriccssatisfy
(15) :b oN A MoDIFIED SECANT METHoD 207
In [9] ore
assunesthat the-napping !',.1'): l*, ?i /l is
symm-etrici'e'
¡';,ii jl:
¡5,,,x; Íl.In17l.t¡ii
couaitiónis
no longer.required.I,et
us'remark
that in oo, åi"rnplå 2,
andA,
arenot
sym¡retric,while ;1, a'd
L¿.+!A"or".
2'2
In both ol the
abovecited
papers, ol1e stlpposes,in
orderto
assuresufficient londitions for the
conriergenceof thé
secant method,that
the;;;;;ü
(x,j)* li, ll;ll
salisfies a"Lipschitz conctitiouat
least. Wc shallwritc tlris
condition urldcrthc lorln
:(17) lllr, y; fl - lu, ,; Íils nllx -
ull+
lb'-
ull)'Itíseas¡.toprovetlratiftheaboveinequalityisfulfiledloraTlx,y,
,t/,
1)eÚ-Û1r','rri¡, *'ith tt*1'9yd u+a, then lor
eachø=Uthere
exists the lirnit lini"¡r', ll; il, írd it
eqttalsthe
Fréchetderivativ" Í'(x)'
We
haveth"rt' '-'
(18) lf'@) - f'b')lls 2Hllx - )'ll' x' )' e u
The
aboveremark
allowsus to take by definitíon lx, x; ll:f'(x)
for
each xe X. Thus
(18)implics
(17)'--- nã.,"irety, if U* àpÉ.tài /
is'Fr1échet differentiablefor
eachxe
U,urra
li- iiÚ í.'
satisfiedithen
ihere..existsa
mapping-9 *
U= \*'y)- --'ii,
y',
il= 4n, i1 v'hich
satisfies(16)and
(17)'\\re can take' for
exarnple,
This
rernarkwill
be useclto obtain the theoren
concerningthe
con-vcrgùce of
's process[3]
as a cotlsequence of the theo- renrconcer oi th" trloaiti"tl
secant methodlvich u'ill be
proved3.
Themotlifierl
secant melhodThesalneasintheprece<lirrgsectiolr,let/bearronlinearope-ratorlrom the
Banach,pu""
.Einio the lianach
lPace 4', ^314let the
sphereU-:,
:--uø;:,-;;rj ri" in"l"¿ed iuto its
ciomaiirof definition. We
supposcthat the¡e
existsa
maPPing.U x U = (x, 3t)-
lx,Y; fl ¿ I-(E' F)'
r"hi.lt
satisfics (16) aud (17).Let.r'o bc a-poiut.of
U',Io.r u'hichthc'lirrcar
;ñ;;;-i;,,- oì,ilìr-¡àrrí¿"ãìy ii,.,,"'tibie.
Thc modificd sccant rncthod,*iL ur:"
gã;ägio'Júd; "o"sistt of the
followinginterative
procedure :(19) x¡t*L:
x^-
lxo,*u', Íl-t
-f(^'"), n:0'1'2'
'"
f,(xr, yr)
-
f'(Y', Y,) fr(xr, xr) - fr(xr, Y")frz-tz A
Az:
Ít-lt xr, !z) - .fz(
f"( lt.,1,"\ f,(x,
-
ItU',fit-lt
fr(xt, xr) - fr(y', x")
xz-lz fr(yt, xr) - ft(Yt' Yr)
/"
- \t"
f,(yr, xr)
-
f,(Y', Yr), rz) - Í"(x', Y")
,z-tz it-lt
tlt - tt
I
Il / is
differentiable andits
Fréchet d, rivatives/'
is coltinuous or1,h"
,t]:g-
Àént [r, 5t]: {tx +
(1- t)y;
te f0, 1l}, then the linear
operator grvcn by1, :
i -f'(x *
t(5t-
x))dt,also satisfies (15).
That
meansthat
A2,As, are
devided differencesof t
Mõreover, anY convex combination o
x
and y.Let
us nolv Lettrrnto the
generadivided
differences see[1].
Concernspaces
sec
fl0]. I,ct us
sulll,loscth
includcdinto the
dotnain oftbc
opeD : {(x,
1,)e U x U', x¡ 1,}.
\4/eD =
(x,y)-
lx, 1,, fl = L(8, þ)
where,
for any pair (x, !) = D, the linear operatorlx,l'| Í) is a
diviciecldiffcrencc of
/ on thc points r
andJ'
r.e' :(16) lx,1; f)(x - )'):Í(*) -Í(:')
l-x, )' ;
Í) --
.f'(, I t(y -
t))dt,.20g
F. À'PorI{A
6For the study of the
convergenceof the
seçluence(7-)i-'
yieldedby
l1g). rve need soine results concðrning
the
behaviourof
sucha
selluenceì;"iir"";";iã"roi
"u." *h"t" / is a cerîai.
real quadratic polinomial'LII}IMA3'|,Ud,H,qoønd'roareþositiaenumbcrssati'sfyingtkecond'i-
.tion,s
(20) 6ln +
^tq,¡
^Y
< !
tlten tlte function'
(2t) ct(r):+(u, +
d-211øa'Ç-8il)
is a
rateof
conaergence on the interaøl7r:10, rol,
ønd the corresþond'ing fu,ncti'otcc
'is giaen bY7 oN A MoDIFIED SECANT METHoD 209
Taking into
accountthe fact
til:atf is a
convexfunction,
weinfer that
d' >
f'(xo!o}
>-Í'@o(')) for anv r e
10, ro)'Thus, for
eachr e f0, ro], we
shallobtain, via the iterative
procedure25\. a
seouence (x.)î--0, decrcasingly convergingto x*'
Tnthis
caseit
isiíäi ìn"Ëi|;-1.t;ËiffiÁ o, and ol
definedãs
ábove, reprcsenta rate
of;;;;"ú;;"e- and the function
relatedto it.
Thefolloq'ing
equalities are obviously satisfied :(28)
xo- x, :
o(r)-
o(co"(r))'(2g)
xn- %,,+t: ^"(r),
(30) x, - x* :
o('n(z))'Now,
we are ableto
stateour result
concerningthe
modified secant method:THEOREM
3.1. If tlte
cond,itions (16). -a,ud. (17.) are,søtisfied'for
aII*, y,'-"iî'J U :
Ll(xo, nt'),ønd if
tlt'cfollowing
inequalities:(31) lllro, 'o' ¡.t-t¡1-rz
d"(32) ll*, - xolll
4o,(3s) lll*0, xo; fl-'f(xo)ll <
,o'o(r) : 4r+ -r -
d &,(22) H wlt,u'c, .(23)
(26)
":*"Jffi
Proof.
First,
rve observethat
theincquality
(20) impliesthat
the quan-titv ¡ndËr the squalããrt
signfrorn
(23)is
nonnegative.Let
us consiclerthe real
poliuominal(24) Í(*) :
H(xz-
ø2)'It is
casyto
1lr-ove,that
for .any startiug.Point
chosenin the
interval1a, t
.o' | , aridtor
oäyporitivc
n*rnb".7,^b"lott
g to tlieinterval lf
'@o) 'i-
.o L,thô itcrative
Proccdrtrc(25) nn*r: x, - f
"(x)¡dyielcls
a
seqLlence(**)i:0,
decreasingly convergingto the root 5* :
Qót tt1"
equationf(x) :0.
Sctting for an¡' r e f0,
ro)are
fw then the
seq'bence(7,)i:0,
obtained'.ll tnl
üeratiae þroced'ure(19),
c s to o ,oot x* oÍ 't:it
equøt'ionf (*)-: 0,
and' the Jol'l'owinginequø re satisfied:
-(36) ll*, -
øollS 6(rò - o"(o"(zo)), n:0, 1,2, "', (97)
llx,- r*ll <
o(<on(zo)), m:0,
1,2,
' '',
(3S) llr^ - x*ll S
o(llx^-
x,_,rll)- llx, -xn_,l[ n:1, 2, 3, " ',
wløere a¡ and' o q're giuen resþectiuely
by
(22) ønd' (23)'e
Corollary statedin
SectionI
andsent section. The
iterative
procedureu!,
t*
ot,*o;,i'¡r! I1lrl;-J";n"i ;"ít
c¡uation
Í(x) :0. We attach to
the / - L'analyse numérique et la théolie de I'approximation - Tome 8, No 2' 1979(34) (35)
(^ln +
^ln + n)'
=m 2
o(ro),v
d
xo:
xo(r): a"*-r,
dH
we have
xo) x*, aú'f(xo)ld': ¡..-'r'aking.P^(Í):f(xr)ltl
anð"o(r):
vo- - r* *" äbtoi"'the
t<irmirlas (2'2)and
(23)'Denoting
*r:-irlrrl + q;,
àoa"o*pitihg t¡e .divided
differcnce oftrr" ro""iio""¡ å"
thö'päints^xo(ro)and ro
rve obtain,t27) lx¡,
ño:fl :
d'210
pair (F, r0) the rate of
convergencer,i giver by
(22) andthe family
of sets :Z(r\ : {x e E; lllxo, xo; -fl-'[email protected])ll
Sr, ll* -
xollS
"(ro)-
(39)
(-o(r)\, r=)0,rol
It is
clearthat
z(ro):
{xo}, sothat
condition (7)of the
above mentioned Corollaryis
satisfied.We
shal1 provethat condition
(B)is
also satisfiecl.I.et x be an
elementof z(r),
and le(40) x' : F(x) : x - lxo, xo; fl'f
@).Using
(3)we
can r,vrite(41)
llx'- *oll
<-ll*' -
xllt
llx- xolls
zf
6(ro)- "(r) :
:
o(ro)-
o(co(z)).From
(16)and
(40) weinfer that
,,2¡'i:,,.'
);,1,1, ; ",o ;,,r,,'uï) _;',) :
Accordingto the conditions (17), (31) and (32),
the
above equality yields:lll*0, xo; fl-'"f(x')ll =! Qll* -
roll* ll*' -
xllf
llro- t,ll)llr'-*ll.
Using
(22),(23),
(39)and
(40),we
obtainlllxo,
xo;f)-'f (x')ll (.(r).
This
relation togetherwith
(41)imply
tlnat x,' =Z(at(r)) sothat
condition(6) is
alsofulfiþd. It
follor,vsthat by the iterative
procedure (19), oneobtains
a
seçl11ence(x,)i:o
rvhich convefges to.a root
ø'r'of the
equatio_n[email protected]):0.
Moieoverfoi
eachn e {0, I, 2, ,..}^the
ineclualities(10)-(12) aie
satisfied.But the
inequalities (11)and (i2),
correspond respectivelyto the
inequalities (37) and (36), whilefrom
(10),(I2),
and frornthe
facttha| o is
án increasingfunction on
10,,ol
weinfer that
llx,,-, -
xollI
o(ro)-
o(llx,,- x,-'.ll), n: l, 2, 3, ...
The above relation shorvs
that x,,-,
=Z(llx,,- x,_,ll) lot 'n: l, 2, ,3, ..
'so
that the condition
(13)of the corollary is
fu1filed. consequent.ly t4.9aposteriori estimate
(38), r,vhich correspondto the inequality
(14),will be
satisfiedlor
%: l, 2, 3,
. ..
i.Concerning
the
hypothesesof the
above theorem, we haveto
notethal, in practìcal
applications,the number
qoÍro,mthe left side of
theinequalitf (32)
can 6ôtaken
as sma11 as wanted, becausehaving
anini- tial- appioximation xs, oîe can take lor xr.a small perturbation of it
(for
exampTexo:
(1f
o)øo).The key
conditionof our theorem is
re-g oN A MoDIFIED sEcANr METHoD 211
oresented.
bv the inequality
(34).This inequality
canbe
satisfiedonly if i"ìïJåär;ä";"h;ihä[ ir,it lr'é ioiti"t
app.roximationx, is
gootl enough-rrowever, we can ptonã
tnát
tne condition (3-'4) isin
some sensethe
weakest""r.ì¡ì".'f"deecl,'lei h, H,
qo anð.ro be'some
positive numbers,and let
i.r""""ri¿". the'real
functioñf
givenby the
formulaf(x) :
Hxz-
dro- fi ø -
Hqo)'..l.lre d.ivid.ed.
dillerence of the
functionf , wi)l
-obviouslysatisfy
(16) anclila. îfr" i""qualities (31)-(33)
are also verified',if
we takerr: +, fro:o *"!ro'
.Ilowever,
if the
condition (34)is not verified, then dïo) ) ø -
Hq')''and thus the
equatio"[email protected]):0
hasno
solution'In
the following we-shall showthat
the estimates(36)_(38),
obtainedin theorem
3.1,arä in
some sense,the
best possible'pRopo,srrroN
3.1. (96)_(93)
a.res !"!!-
ense I d, H'
4q Q'nilr¡'. e
xnø-isal
nd' ø .Pàir . of.O9;
whicktke
and'Jor wlt'ich''th'e (36)-
&Ye
qualitY 'Proof,Theproofoftheabovepropositiorrisaconsequenceofthe proof of
Lemma 3.1.From
(36)it
rollorvs tinalllx*.- xrll5 õ'(f.)'
Weshall
prove!h"! .f*
is
trreäid;.';.";";f tt* "qü"tiot f'('il: b"itt o
neighbourhood'of
thepoint ro. I'etT
denotethe
open spherewith
cenLrexo
and' rad'ius o'(/0)+
*
2a.PRoPoSIrroN
3'2' If
ttt'a ineqwølity Qa) fro;ry'. Th'eorem3'1 is
strict'tnrn]îìiìilt i*, ,kor, ,iirtrnæ
i,s-guørântbed.' by"this
theorem,
is
tkeunique solulion, of th'e eqnøtion f (x):
0'in
the set U^
V
eroo¡. Firi,"rve ,toie'that if the t""n"-"tll"^(U,t) tt strict' the ø;0'
sofhat x* = UO
1r. luetY* b: an
eletneutof
U(-)
lZ,such that /(yr) :
0'Using
(16) weobtain the relation:
(41) x* -!* -
lxo,*oi Íl-'(lxo, fro; fl- l**, y*; fl)(x* -y*)'
Now taking into
account (17)we
obtain :,(42) llx* -
y*ll < 1 (tt*, - x*ll
-F llto-
1*ll)ll*^'- v*ll'
F. A. POTRA Õ
272 F. A, POTRA
On
the
other hand,from
(22), (31)and
(32), weinfer that
((43) T Urr,- x*ll*
llro- r*ll) <ft {z"tr,) *
2øi
?o):
1Finally the inequalities
(42)and
(43)imply that x* : y*,
sothat
the'proof of the
propositíonis
completed.d.
Thc" modified Newton's methodAs we have anticipated
in
Section2, the
results concerningthe
modi-fied
Newton's method canbe
obtained, asa limit
case,from the
rcsults concerningthe
modified secant method.In the
following, we shall trans-cribe the results obtained in the
preceding sectionfor the
case where.fro: *o and
çro:
Q.r,ElrMÂ 4.1.
IÍ d, H
and.to
&/e three þosiliae n,untbers søtisþing th,e:inequøl,ity ;
'(44'¡
4Uro3
d.,then, -'
11
l*lrDGoRÞM 4.1.
IÍ
cond,itioto(lB)
hold'sfor
each'x, ! e U : U(xo,'wl
ønd,
i,f
th,efollouing
'in,equalities :(48) lllf'@o)1-r¡¡-t¿
d(4e) lllÍ'@o)l-'Í(xòll s
ro,(50)
4Hro3
d,(sl)
ttt,/
or(r,): L""A
- ^IF-Z ufi),
øre
Julfiled,
then'tlte
sequ,ertce (47), convergesto a root
x'Nineq'u,al.il,ies arc satisfied :
(*,)i:o
obtain,ed' b),tht
iterafiae þroced'u,reof
th,c cqtr,al;iottÍ(*) :0,
andthe
following(52) llr, - roll S
or(zo)- c'(aü(ro)), n :0,
1,2,
. . .,(53)
llx,,-
xnllS o'(coi(ro)), n:0,
7,2,
.'., (54) llx, - r'tll < orlì(r, -
xn-t ll)-
lìø,,- ,r,-'li, 7L: l, 2, 3, ...,
uherc
o,
and.o,
a.re giaert, resþectiuelyby (aQ
and (46).From
Propositions3.1
and 3.2we obtain the lollowing two
proposi-tions,
concerningthe
sharpnessof the
estimates(58)-
(60) andthc
uni- qrlenessof the root x*:
rRoposrrroN
4.1. The
estimates(52)-(54) nre
sloørþin'
thefolloa' uiqg
sense: tsor any three þosit'iue nutttbersd, H
and ro satisfyingthe inequa-li,ty-(s})
tlrere exists a functionf, ukich
søtisfies the kyþothesesof
T'hcorem4.7,
nndfor
uhich tke ineqr.taliti,es(52)-(54)
are aerifieduith
equ,al'ity.pR.oposrrro¡t 4.2.
If
tløe inequal,ity(50) of
T'hertrt"rn.4.1 is
strict,tltcn úhe
root
x'i', wltose existenceis
quørønteed b), Tlteorenr, 4.1,.is the'wn'iquesolulion of tlte
eqn,øtionÍ(*) : 0 in
th'e set U)
l', ulterc l,' is
tlrc oþensþhere
- In uilh the
end, center 1et xous
endnote
rad"ittsthat the
ot(ro) results stated|
2ø.in
this section repre- sent a slight improvement oTthe
results obtainedby tls in [3].
Nanemelythe condìtion (tB) of the
presentpaper in
weakerthan the
conditionlf"@)ll
= ZU, x = (J,
irnposedthere.
Moreoverthe
aposteriori estimate (54), I'ronr Theorem 4.1,is
nerv.ITIlIlERENCIìS
l0r ON A MODIFIED SECANT METLIOD zl'3
(45) .,(r) : ilnr+d-"[email protected])
ìs a
rateof
conuergenceon
thcintetaal I: ]0, rol
and. the corresþonã'ingJunction o, is
giuen by :c,(r):lÇlF--zmp;4 -
1
I
(46) dz
-
4lfdr
Ncu,, as
in
the pre cee dingtlvo
sections,let/be a
nonliuear operator wliich, mapsthe
-sphereU :
A(*0,
m,)of the
Banach spaceE into the
Banach space1ì. We
supposethat / is
Fréchet differentiableon U
andthat
thecondition (lB)
holds. Then, accordingto the remark
madein
Section 2,.there
cxistòa
rnappingU x U =
(x,),),-
Lx,),, Íl e I'(8, n)
such
that
(16) and (17) hold. Moreoverlor
e achx e U
u'e havelx, x; f):'
: f'
(x).I,et us
supposenou' that thc
Fréchetderivative.f'(xo) is
boundedlyinvertiblc.
Wemay thcn
considerthe following iterative
procedure:(47) r¡tt:
x^- lf'(xo))-'.f(*"), n:0, \, 2' ...
which is
calledthe
rnodified Newton's method.'lhis
proceduremay
be.regarded. as
a limit
caseoÍ the modified secant
urethod sothat
frorn-Theorem
3.1 we
can derivethe
follorving theorem:[] Il a 1 a z. s, G., O inear sþøccs'
lìe e et d 5-9 (1973)'
[2] Colclne su'þra aeiþentræ
rcz onale ..Ccrc. ìfat.,
tom P0, 7 (1968).
214 F. A. POTRA t2 t\{a1.HÞn{,{Trc,{
-
RB\¡UE D' aNÀrrY lsIl NUNIÍIRT QUrlEî
DE 1'III]ORIE DE ]T'APPIIOXII{Á'TIONI,'ANALYSE NUIIÉRIQUE ET I,A TIIBORIE ÐE
I;,APPROXIMATIOiT l'ome B,l\o 2,
1S79, PP.215-227
[3] P o t¡ a, Il. -1.., 'flrc ral,e of conuergçnce of a øtod,ified Newton's þlocess. Preptint series
' in rirathematics lo. 36/1978 INCREST.
[4] P t á k, \¡., Nond,i.screte matlrcnatical induction and ilevøtiue e,vístence þroofs. I,inettt algebra ancl its applications 13 (1976), 223-238
[5] P t á k, V., 'I-hc rate of conuergence of Neuton's þrocess, Nunr. l\{athetn, 2í (1976), 279- t6l
L7l i8l lel
IJO]
285.
P t á
k, Y.,
lVhat should be o rate of conuevgcnce ? R.A.I.R.O. Analyse Numérique 1l' 3(le?7)p
27e 286.S c 1r trr i d
t,
J., Eine iibertragung d,e/ Ilegltla. Falsi auf Gleicltungen in Banachrøu.n+. I,II,
Z. Anges'. ìfath. Mec., 43 (1963), p.l-8,
97-110.Sclrröc1
er, J,
Ni,clttl,i,neaye Majorønten beirn. Verfalwen rler scJt.vittucissen Ncihcrung, Arch. ùIath. (Basel) 7, 471-484.CepreeB, A. C. O uentoôe xopô. Cu6up ilameu.
X,2
(1961),282-289,V ¡ ¡ rrr, C. 06 o6o6qeHru,ß pas)ercHHbl; pasHocmnx)
I,
II, I4AH 3CCP, (luaøxa, ltare- uarur<a,l6
(1967), 13-26, 146-156.Received 12. III. 1979.
Il/CRES'I' - Bttcuresli
oN INTERPOLATION OPERATORS (II)
(A PROOF OF TIMAN',S THEOREM FOR DIFFERENTIABLE FUNCTIONS)
by
R. B. SÂXENA antt K, B. SRIVASTÀVÀ (Lucknow, India)
1. In continuation of our
stuI,et
-1 < r < 1,
cos/: x,
and cos /¿a:
xÞnwith
(1.1) lhr:-'":-- , h:0,fl*,
2n*l
n :7,
2,Frrrther lot
Jt,: -n,
11,,let
ri"- 2n*l
2 (t-t¡")
(r.2) I
*,(t) :
(2n
!
1)sin-
(l-
f¡")t ¡ : O,ø stanils fo¡ h - 0, 1, 2, t.