• Nu S-Au Găsit Rezultate

View of Antiproximinal sets in Banach spaces of continuous functions

N/A
N/A
Protected

Academic year: 2022

Share "View of Antiproximinal sets in Banach spaces of continuous functions"

Copied!
9
0
0

Text complet

(1)

t26 Þ. canaMnñ

10 I\IA1'FIEMATICA

_

RPVUÍT DiANALYSE NUMÉRIQUÉ

ET DE THEORIE Dtr L'APPROXIMATION

r,'aNALySENUMÉRIQ*'ät-ir:i#ä:litt"ljrlu^pp*oxlMArloN

RE¡'ERENCES

[1 j C a 1' a m R. R. a u, S. S. Române p Rornâne,. e t r a, n-d,inrcnsional quøsiconfortnøl 1074.Bucure¡ti t9ôe; ,,ÀLacus È;"*",,, xËít (ecf) rtaþþings. Þdit. an¿ Edit. Acad.¡\cad.

'

ri;:;i;:i",y;;h;,#'ï"#nlÍ'il åli:lr,

_

uas,iconformal møþþi,ngs in sþace. Trans. Ame¡, cient of quøsiconformatity. Acta Math. ll4, I maþþings in thyee sþøce. (pretintinary report).

( I e57).

rresþotr.dence

_of . a q-uasi,aottforntal ntaþþittg in Army. 1.he Univ. of Wjsconsin. uni,,IeSfrrii_

1e63).

n.taþþings

,in

sþace. Ãnn, Acad. gci. ["orr.

ses

of

d,ifferenti.able Junctions. Arkiv för Math.

nd p_caþaci.ty. Ilichigan t,Iath. J. lG, 43_S1

[ll]

3 o p u AxaÃ

u, B. Havx

(1962).oôuo¿o rcìacca omoôpameuutí s npocmpaHcnee, ficxa.

[12] "On

¿lrcttettmo, nocpeôcmaotrt ceqcttuti.l{otr,r. Axa^ Hayx

CCCP

).

ANTIPROXIMINAL SËTS IN BANACH SPACES OF

CONTINUOUS FUNCTIONS

by

s. coBzas

(Cluj-Napoca)

Receiued l.VII.1974.

I.et x

be a normed linear space,

LI

attof'.-void. subset

of x and

x e

x.

We

use

the following

notations:

rt(x,

M) : inf

{l

lx - yll: )'

e

M} -

the distance rro'rn x

to

IVI ;

P*(*) : þ

e

M:||x - yll:

d'(x,

I,l)} - the

metric

plojectiou;

E(IVI)

: {x

e

X: P*(x) A

Ø}_

'r'lre set ¡Z is òatled þroxim.inal í1 E(

: M

(see

tsl) -

Follor,ving v.

of

all

normed linear spaces r,vhich set, and

by N,

the class

of all

norme

oroximinal

bounded closed convex

Lr,

.u,. ot,rJg

16], a

Banach spacc b

is rrou-reflexive.'I'he

chatacterizati

is

rnore complicated. The

first

exam

given by

M. EDDLSTETN

and ¡.

lho."u that

the space c belongs al

tion; all

undefined terms

are

as

ces

X, Y

are isomorþhic (notation phic bijection g :

X -' Y.

'l'he map

^If

further, llqiø)ll : lløll for

all

ornorþkisnl, and we say

tlral

the spaces ù'c (notatíon'

X:Y)'

I,et

S be a compact Hausdorff spate and C(S) be the.!aga-cþ space of

all real -

valued, cåntinuous functidns defined òri S.

en

id,eøl

I

is a linear

;;br;;"" or õijf't""tt tt'"t

xy e

l r.or all x

e

I

a''ð'

v

e

c(s)' rf S' is

a

(2)

Iza

s. coBzAli

2 3 ÀñriþnoxivrñAl sETS t29

sLrbset

of SletZlSr):l*.,C(S)

:ø(s)

:0forall se S.]. Thel, 1is

a closcd ideal

in c(s) ii

and only

ii

tnerà is a crosed subsef

sr'ir s ,"åi ti"i I :

Z_{Sr) (see

l8l,'p.

trO)-

\\/e are now

in

position

to

state

h non-void interior. 'We asree convex

body. It

follows ãhai

to

a convex cell

M in

a nor_

on X

equivalent

to ll ll,

and

M : ll'llr is an

equivalent riornr

on

X,

ls a

convex cell

in

X.

rc'ce that i'

an expansiorl coo,

,, * ïfîlï;:'# j.iìr"îllff,Íl'j:

n,

to. be zero.

'Ihe

occrlrrence of

ã

numbe,

nr: ö, ,r*.", ilrat the

corrcs_

pond_ing

It

is r,vell

te¡m

known misses,

that e.g. c is

<¡3.0 isomo

l-

øtural, numbcr.

If

euery i,nfi,ni,te

an

øntiþt,oximinal conuex- cel,I,

in

C(aþ

.n)

contains

øn

anti-

Proof'

Let I

be au

infinite

dirrensional closed ideal

i' c(o,h.n). ,rhe'

l-lrcre exists

a

closed set

;\ c

[1, <oÞ,ø]

such that I : Z(t\). p,rt

Är:

lore.(i

- l) I I,

l.it'..r1,

ln: fl, <or.ø]\À¡

and

Zn: Z(l¡)

Lor

i:7,2, ...,

n,.

Is

O is a set and

I q

O we denote

by l"

the characteristic

function

of the set

l,

i.e'

ll for lel

x.(l) :io

to, leo\t.

'Ihen

:

{x.X6. : x e C(roþ.n)}

=

C(4,).

Since An is homeomorphic

to

[1,

.o] it

follows

that

Zn

=

C(qÊ)

(i,e.

they

are

isometrically

isomorphic).

Put Âr: Â lAn and Xt: {xeZ,:x(a):

:0 for øe.4,¡), for i:L,2,..',

n.

then Xn

is a closed id.eal

in Zr,

and

(1) I:Xt@...@X,,,

(the direct sum holds algebrically and topologically)-

For all xeI, lt: xtl...+

xn,

xieXn, i:7,2,...,tr, we

have

(2) llxll: rnax{llx'.|'','..,llx,,ll}.

We intend

to

show

that without

loosing the generality we can suppose

that all the

ideals

X¡, in the direct sum

(1), are

infinite

dimensional. Indeed,

let

us stlppose

that fl, nf : MtU fuIr,

a:nd

X¡ is finite

dimensional for

i

e

M,

and.

infinite

dimensional f.or

i

e

Mr.

The ideal

X,

is

finite

dimen- sional

if

and

only if the

set

A¿\Àr is

finite.

PutA' : U (4,\,),

nx

: card('), M!:{ir, ....,ip}, ù1 ... 1ip,

ie Mt

Mr: {ir, '.., j,), j, < ...

anã

tt

e set -ô.,

is

closed,

it

follorvs

that all

the accumulation points of the

set A,

belong to the set

Ä,,

so

that

the sets Än and An are homeomorphic.

Therefore,

there exist the

homeorph.isms:

gi,t Li,n

fnt, -l-

1,

coÀ],

..., qir: 6*^r, 9l,i

¡,

-->4,-t,

.

"',

9,p: l\¡o

n

L','.

Let ü:À' * ll, ml be a bijection,

and

let us

define

the

rnap

g: [1,

coh'

nf * ll,rah'

tr'f

ç(ø)

: - IÙ("ì'. "t1

ì çr (*),

o e

Ar\A',

'i

: 1,2,

. '

.,

n'

Then

g

r,r'ill be

a

homeorphism

of

[1,

'

n] onto

[1,

.u '

tr'f

,

and tìre mäp

1:C(<oÈ

'n) *C(ah 'n),

defined' by

Tx(æ)

:

x(q(e")), ø

e [1, .lh'

tr'1,

x

e

C(t¡h'

n),

will

be an isometric isomorphism of C(<oÞ ' n) onto C(<¡'t ' ø). This isomorphism maps the ideal 1 onto an ideal

/ : T(I),

of the

form:

':';:, : ä i, ãì;;.. å zØ:) :

2 - Mathematicô - Revue d'analyse numêrit¡ue et de théorie de I'approximatlou. Toroe 5, N0 2, 1970.

(3)

130

(see

l3l, IV.

6.3) countable, then

(4)

and (5)

S. conZ.r.$

4 5 ÀN IPROXIMINAL SETS

íai

where

Y are infinite

dimensional closed ideals

in Zn, i: l, ....,

t.

Therefore, we can suppose

!h?t I is a

closed. ideal

in cia, .¡¡ ol th" i;r;

I:.Yre _... Z¿,'i:1,2,,...,1. ØYt, Yi being infinite

dimensional'closéd

ideals i;

. .Lgt

us-the'supp_ose.that

i'the

expansion

(r), xo

is an

infinite

dimen- sinal closed ideal

in 2o,i :.I,.2, ....,'n.

Sincà 2'o

='C('þ), ¡V frvpotfrlrìì

X¡ will

contain an antiproximinal corlvex cell

Vn,'i : i, d,,'

, ø. We rvill

,

is an antiproximinal convex cell in 1.

and topologically,

V is

a convex cell

^:r" i"j'iiï: .'iT ;:"i L;,7

2,....,n, By

(2)

0 < llr -lll:max {llxo-y,ll:i:L,2, ,..,n}.

l1tt N-l: {?11r,.ry1.:llry.-

y¿ ll

:

llø

-yll} and N,:

[1,

ø]\N,.

N, fØ,

and

for a| i

e N,,,

ltxi.- y;ll : l)*'_ lll> 6, ro'tr,ui tÌ a

the set

lllx;-yil.rc v,

being antiproximinal,

ieNrattdxreVr,

there prit exists

y!,:U" j'o'. vr, "e

such

Zr. that

Set llø,

-

y':Dú]-)y,

i-/Vr ¿=JV,

[*""Sr""that I

yo

:0).

Then,

putting maxØ:0,

we have

llx,,- y'll.: max

(max{ll x¿

-

!,¡

ll:l eN.}, max {ll*, _ y)l: i €Nr}) <

<llx -

yll.

Therefore,

By the

set

Z is

antiproxirninal,

e.E.l.

I.emma

3, it

follows

that

we can suppose

(3)

C(.s)

:

C(.0).

rf ìl^i,s .a compact

r{a,1dorff

space then,

the

conjugate

of the

Banach .p?:g^g(S) e

M(S), is the

space

M(S) of

alî

reg'tar

Éoret

tr"å.ír"r on S. F"; p;

rve havc

llrrll

: u(p, S)

(the

total variation of

¡r)

and

v.@)

:

J tt'l' dp(r),

x e C(S),

(Irr l3l the

space

M(S) is

denoted

by rca

(S)).

If S

is llpll

: ),=rltr(s)l

p(r) : X,-5ø(s)'

F(s), ø e C(S)

Conversely, every

function p:S --'R,

such

that

)"=51¡.r(s)l

<

oo, defines

through (5)

a

continuous linear

functional on

C(S), whose norm

is

(4).

If

ø

is

an ordinal number, we denote M(æ)

: M(ll,

ø]), i.e. the conjugate of

the

space C(a).

l|he

isomorphism

A

fuom

the following

lemma, was constr-ucted by

l{.

ÞDEr,srErN and. A. c. THoMPsow

l4], in thé particular

case

of the

space co.

'Ihe

proof given here is the same as

in [4]. If

S is a compact Hausdorff space, we denote

by

8"

the

evaluation functionals on S, i.e.

(6)

ò"(r)

:

x(s), x

eC(S), seS.

I,

e m m

a 4. Let S

l¡e

a

countable artd. comþøct Høusd.orff sþøce, S, ø closecl subset of S,

I :

Z(St)

ø

closed. id,eal

in

C(S), S,

: S\S, *Ø,

u, e

e M(S),

llø,ll

<

ø

1I, s e 52,

and.

g

e

M(S)

definecl by

B.:Ð"+ør,seS2.

If for

all,

x e Z(Sr)

the

function Ax

d,efined. by

Ig,@), s ess,

,4r(s):10, s

e51,

belongs to

Z(S),

then

A is

a.n isomorþh,ism of Z(Sr) onto Z(Sr), ønd, its ad,joint

A*

aerifies the rel.øtions:

z4*à":$", s€52.

Proof

. By the definition

of.

A, it is

clear

lhat A is

a

linear

operator.

Put

D:{x

e Z(Sr)

:

lg,@)l

(

1, s e Sr}.

Dvidently, D is

a

symmetric,

convex, closed subset oI Z(Sr). Since ll*ll

<

< (l + ø)-l

irnplies lg,(z)l

a

1, for all

s e

52,

it

follows that 0

is

an interio¡

point

of

D.If. x e

Z(Sr)

is such that

ll*ll

> (l -

ø)-1, and

x

e

S, is

such

that

/x(s)/

:

lløll, then

le,(ø)l

> lxls)l - lu,(x)l>

llxll

-

ø . llxll

: (l -

ø)llril

> I.

Therefore,

x 4 D

anð.

D is

also bounded.

If B

denotes

the

closed

unit

ball

of Z(Sr),

then

D: {* eZ(51):lg"@)i <

1,

s = Sr}: {x ezls,):lAx(s)1s1, s eSs):{x ez(Sr):llAxll( 1}: A-'(B).

Since

D is

a convex cell

it

follows

that A is

an isornorphism of

Z(S.)

onto

z(5,)' Finally

.,4*\

(ø)

: t"

(z4ø)

:

Ax(s)

:9,@), x e

Z(51),

s e

52, i.e.

/*8.-gs, Se52,Q.E.D.

Then, +

vi,

),ilt

s

(4)

732

s,

cóBzA$

ò

If,X is

a

that a functio

onvex subset of X. we s"-,

there

exists

^ \'-suþþorls the

sét

¡z-ï

we

de_note

by ,{tr!,:;/Jí)J '# rw,'.

We mention

the followi from [4];

Lg,*-^a-5.([!J, prop X be'i

Bønøch sþace,

M

ø

non-uoid., bound,ed, closed.

co X

qnd.

B tie"

cl.oseil

"ri* ioîl

of X.

Then, the set

M

,is

ønt

and,

only1¡

E(M) as(B) :

{0i.

bv "p,!Y)

^the closed

linear

space spanned

by M.

We have

fr QVI):

:y.-W-\.

Asequence

{xo:k, e N}inaBanachspaceXis

called coìmþtetc

if

sp({øJ)

: x. u

every

x e x

can

be

uniquely ìepresented.

i¡ the

forni

",= Ð

&¿x6,where

øoe\,

then {xo} is called,

a

bøsis

for X. A

sequence

to {*} if lïiJ:.'"#%

For

complet

. rn

the ^sequel

we will

use several

times the foÍowing

remma, whose simple

proof is

omitted.

fr:;'i;::!y,:,h

urther

if {xo}

ls (resþ.

a

bøsis)

_ _ \"t,{tn: i e

N} betheusualbasis

of

coanð.

{g,:ieN} ecl:¡rits

conju_

gate system.

B. Lyt

l)*i, ,!):2, e^N]

bg

aco -

bíortkogonat sys- such

.tkøl

the scl Br.

: !(

-e co :

I 1, ; e"ru), ií

a

co, ønd.

tet

ll.ll1 be

tht: lriinleoail¿i' iát o¡

tie"set"B,'.

Txr:e¡,ieN,

extend,s

to øn

ísom.etric i,somorþhism

T of

(co, ll.,,lr)

onto

(ro,

ll.ll).

The

adjoint

oþerator

of

'f

,

uer.ifies

T*81

:¡r, ie

N.

ANTIPROXIMINAL SETS 133

Proof.

Since

B, is a

convex celi

in

co,

its

i\,Iinkowski

functional will

be

a norm on

c0, equivalent

to the

usual

norm. By the definition of

the Minkowski

functional, we

have

for all

x e co:

llrilt:inf {),>0:x eÀ8.:inf {À{0:À-1 xeB,}:

: inf

> 0: lå,(i.-t . x)l < t, i

N} : : inf

2 0:lhn@)l < r, leN} : -sup{llr,(*)l:ieN}.

Put X : sp ({xt: i . N}), Y : sp (ei

:

i e N)}, and

define

the

linear operator

T: X nY by f(D:r::rø¿x¿):D'i:ron

e'¡,

n eN.

Then, bV Q) and taking into

account

that

hn(ù

:0 for i > n,

we

have

for

all

y :DI:,

a¡x, e

X,

ll?yll : llDf:' ø,eill: max{lø.,1

lo"l}

:

max{l

h,(Ð1, ...,

lh,(y)l}

:

-

sup

{lh,(ùl:

a e

N} :

llyll,.

therefore, I is

an isometric isomorphism

of (X, ll'll.)

onto (Y,

ll'll).

Since

the

system {ør}

is

complete,

X :

co and

T

extends

to a linear

isometry

of

(co,

ll.llr) into

(ro,

ll.ll).

Because

the

norms

ll'll and ll.llt

are ecluivaleut,

there exist two real numbers

ø,p

) 0

such

that, øllrll <

lløll.

<

Plløll,

%

e

co. Therefore,

llTxll:llxllr>

allxll, x e co,

From this inequality,

easily follows

that the operator 7

has closed range. Then

T(co):T(tù=f6):Y:co.

This shows

that T is an

isometric isomorphism

of

(co,

ll'llt) orito

(co, ll.ll).

Finally, by the definition of T

and

by the biorthogonality of

the systems

("i,

8't) and

{(x;, k)) it

follows,

r*ò1(ø¡)

:

'í(Tx¡)

: ìi(r;) -

à¿;

:

kn@ì.

The

system {ør} being complete

in

co, we have

7*8j : kr, i eN,

Q.E.D.

R e m a r

h. It follows that the

sequence

{ør} frorn I'emma

B,

is

a basis

for

co, equivalent

to the

usual basis

of

co.

Proof of

Theorem 7.

As

was

shown

(see

(3)), it is sufficient to

prove 'Iheorern

1 for

a space C(coÈ).

In

order

to

avoid tedious notations, we suppose å

: 3.

The

proof of the

general case proceeds analogously,

7

(5)

134 S. C-ISZAS B

I,et us then

suppose

that  is a

closed súbset

of [1, o3], and 1:

: Z( ) is

an

infinite

dimensional closed ideal

in C("t). We

have

to

con-

sider several cases.

Case

I. l\:Ø,

i.e

. I : C(.t).

Firstly, we give a

complete biorthogonal system

{(t¡,

"f):1 < i <

<o3}

in

C(ors)

X

il4(coa).

I,et us

define

the elements

e¡E eC(cos)

forl(lçco2,by

ANTIPROXIMINAL SETS 135

I

Lel x

e C(to3) and- e

> 0' Using the continuity of the function

ø

on <ôs, az .

h "rr. .ä^.*1Þl fi +-1, oi.

can

find

sucðessively

the

natural

ä"-¡Ltt

ho,

lo,

mo,

| <

h'o

"lo,

Ttxo

1lo'

such

that (10) lø(.t) - t4i)l < e, lot i )

c¡2

'åoi

(11) lx(^'' (å-1) +i')- x(.l.'' å)l{', for o'lo1i {r¡2

and

h:1,2, '.,,

/to;

(r2) lx(^'. (å-1) f co'(l-1) -lnt)-x(az'(tt'-l) +''l)l<'' . lor m¡<m <Lù,

h

:

1,

2, "', ho

and

I : l' 2" "'

lo'

LetNo: [1,

Þ0], N1

: [1,

Þo]

X

11,

lÀ, Nr: [1' Éo]x [1' l]xll'

mol'

and

let

! :

x(.J.})'

,",*oÐ" lx(^' 'h) -

x(a})le,''n

I + D Lx(rr.(å -

1)

*

co'l)

- x(^' ' h)fe-'.6-t¡+o'r *

(È' l) e ¡rt

+ Ð lx(^''

(,ä-1)

!<'t'(t-l)-lm)-x¡o''(å-l) f c,'l)l'

(h'l¡nle¡¡"

,eo¿,(Þ-l) *o.(r-1) tru.

eoualities (10),

(11)'

(12)'

it is

easy

i'<

.¡r,

thät is

llx

-

yll

< e.

'l'hcle-

Let tl -- {* =

C(S)

:lløll.< 1}' Bv

a result'-proved

bv s'r'

zuHovrcKr

1-11.1.

in the

case

of a metri" "o-pu"i S, and'by

n.H. PHËLPS

[7], in

jenËr"t,

¡r e S(U)

iI and

onlY

if

(13) s(r-'*)

O

s(v'-) :Ø'

If the

comPact

S is

countable, then

s(¡.,)

:

{s e pr(s)

I

0

(14)

s(p+) : seS:¡r(s >o)

s(p-) : sc

s

<o)

€o''(,{ l) } o.(/ ll+r,(i) :

7 if i:

<¡z

.

(1,

-- 1)'l-

ro

. (l -

1)

j-

nr,

0 in

rest.

eô..(Þ-r)

+r.r(i):

for 1 < k, l, m

.'-¡u¿;

1

if

<o2.(/t-

l) f..(l-

1) -l-

I <l

(co2.(,f

-

1)

-l

a.L

0 in

rest

for 1 (

h.,

l

<-¡'o;

(8)

e.'.¡(i)

:

7

if a2, (h-1) l- t (

r.

a

co2' À

0 irr rcst;

for 1<Æ<co,

e,'(i):1, 1<i(ro3

Let

define

the

functionaTs

fte

IV[(az),

1 ( I

=< ô3, by

(e)

f^2.1¡,t)+a.(t l) r.rr: àr,.1¿ r¡-Fr.{t t)+lil - à.,.11-r)+o.r -

-

8<¡..À

-

òr"

i for 1 ( h, l,

nt,

Ill;

Ír,.(¡- t) +..t - Ð^,.Jr.- l) *..r - Ð.n.¡ - à.",

for 1 <

le,

lla;

.f^r.¡. :$.,.¿-àr.

.f"¡ :

8cu'

where 8, are

the

evaluation functionals (6).

Lemma 9. The

system

{(tr,.f,):1 < i <

c,r8}

is ø

C(øB)-comþl,ete

biorthogonal, systeno

in.

C(as)

X

M(<os).

Proof of

Lemma

9. The

biorthogonality

is

obvious.

'I'o

corrplete the

proof of Lemma 9,

we have

to

show

that the

system {øn

: I ç i < .t}

is

complete

in

C(cos),

(6)

136

(16)

s. coBzÀg

Now, lr.e u'ant

to

define the functioT?l.

gr-. M(^"),

such

that

sp({g,:

Å"*uårñ".;'Ìì¡ ttrl : {0}. r,et us ;";.id;"ir,"'å'frí

""'tt, "t*ii,iìt,

(15) oo\):2r,-t(2i.+t), 1<x<<,l; I <È<<¿,

(see

l4l, p.

55a)

Define

9."(x)

:

r(<u')

* 2-r,: (_t¡t2-t. x(a, .i);

g,,.n(x): x(az

. n)

+ Z-"Li:rl- '-' (- l);2-t

. x(a2 .

i) {

n z-te+aÐ ( r);2-i

.

x(^, .

onþ)),

for 1 < k<r;

go'.(Á-r¡16.¿(x): x(az'(/,

- l) I a.t) t

g,,.r(x)

-

x(ø2.h.)

|

-L -r-

L . ,

-(h -r r-r zl -, I (ì<o

\- /_(_1)0

¡ .

2-¡

. x(az

.

(h

_

1)

+. .

o,(i)),

for 1 < k, l.io:;

8.'.(¡-r)+o,,tt-t)rtn(x)

: x(a, .

(tr

- 1)+, .

(t

-

1)

i

I I

g.,.1¡-tt

+..t

(x)

-

x(oz

.

(ll

- l) +

.

l) +

1-

2-&''

r

-+ÐÐ"( _l)i)-r x(a, . (,Þ-l)-l-.. (l_

1)

+

o,,,(i)),

for 1 <

h., 1,, m

{a.

Proof of

Lem,øtø 10. We

intend to apply

I,ernma

4. Evidently, gr:

:

п

* u,

and llønll

< 2-t

(see (16). We have

to

show

that Ax

so defined belongs

to

C(<os).

But, if {cr,} is a

sequence

in

11, to8] converging

to

a,

then it is a routine verification to

show

that

Eo,,(x) converges

to

go(x),

that

is

Ax

is a continuous

function.

Therefore, I,emma

4

applies, Q.E.D.

Put

(20) where

c(.').

(21)

Put

l'22) and (23)

ANTIPROXIMINAL SETS 737

V:{xeC(co3) :lf¿@)l <1, 1<i<co8},

.f, are

defined

bv

(9).

It

easy

to

see

tlnat V is a

convex cell

in

There exists

an

isomorphism, say

H:

C(oB)

-

cu.

vt: A-t(v),

10 1l

'l'aking into account the formulae (r4), (rs),

(16),

an

examinatio'

of all

¡rossible combinations

g :

"rg;+

o;gr:,

of iú"- "íé-"o ts

g¿, shows

that

S(g+)

f\ S(g-) :Ø. u

¡o'

(17)

Lr

: {x

e C(coB)

:lløil < t},

(lB) Y:sp({g;:t <¿ (.'}).

(le) Ihen yns(u) :{o}.

I,

e m rn

a 10.

7 he oþerøtor A d,ef,ined,by

Ax(í) :

g¿Ø),

L < i <

ios, x

eG(.r), is

an isomorþhism of C(tl.s) onto C(.i.s). Its ad.joint,A* aerifies

A*}n:g¡, l<i(r,ra.

B,: H(Vt) :

HA-L(V),

where ,4 is the isomorphism

of

C(cos) onto C(cos), constructed

in

Lemma 10.

The

maps

A ard fI

being isomorphisms,

Bt will be a

convex cell

in

co.

Let

(24) !¡:

A-Le¡,

(25)

Ø¡

:

A*.f ¿,

and

(26) x,:

Hy¡,

(27) k,:

(H*)-1u0,

forl<¿<ro3.

Applying twicc Lemnra 7, it follows that {(*t,

ht)

: 1 < i ( .t)

is a

co-complete

biorthogonal systen. By

(23), (20), (27) and

the

fact

that (H-r¡*: (I1x¡-t

(see

[3]. VL

3.7), one gets

Bt: HA-|(V) : {x e

co:

(AH-r)x e 4 : {x e

co:

lf,(AH-t(x)l<

1,

1<i <.ot): {xeco:l(H-r¡*¿*f|x)l < 1, 1 <i <,,¡'}:

:{xeco:1h,,(x)l < 1, 1<i <r¡'}.

I,et o:

N

*

[1,

.t], be a bijection

and.

let us

define

(28)

:

fro(il

:

koli¡

Put

(7)

138 s. coBzAg

t2 13 ÀNTIPROXIMINAL SETS 139

for all I

e

N. il

fo-llows-

that, the

co-complete

biorthogonal

systen

{*,, hr):ieN}, verifies.ttre

tryfottresis

"or

r,ãmma

g. ö"rrotins bv

ll.ll,

the

Minkowski

furctional of thé'convex ceil å, i¡l-.lrf *ili

be

a norm

on co equivalent

to the

usual no¡m),

it.follows thai

düeïË exists

an

isometric isomorphism

T:

(co,

ll.ll,) _, þí,'ll.ll),

such

that

TÌ, :

s;

T*8í :

h.

for,i

e N. Here {¿j} d"notes

the

usual basis

of

co and.

{ò;}, its

conjugate system.

I,et us

define

a

new

norm

ll

,lb on

co, by llxll,

: llH-rxll,

,(

e

co,

wherc

17

is the

sonror¡rhism

(2r). k

folrows

that, ll.ll¿ wilr

be

a

norm

o\.r0, cqui'alent to the

usual

ròrm

anð.,

H will

ÈË

ärr"iso-"tric

isomor_

phism

of

(C(co3),

ll.ll) onto

(ro, ll.llr).

r,

e m m

a 17. The set Bf is an

antiþroxirn.inør colraex

ceil in

(co,

ll . ll,).

Proof of Lem,mø.11.

I.etB - {xe

co,:llxll

( l}and Br: {xe

co:ljøllrç

< 1]. By the definition of the nolm

ll.¡¡r,

(30) B,: H(u),

rvhere

u

denotes the closed

unit balli

r (c(os), ll.ll). since

I is an

isometric isornorphism

of

(co,

ll.llr) onto

(ro, ll.¡¡¡,

tt íófio#, til;t -

(31) a :

T(Br).

I,et Y

be defined

by

(18) and

let

(32) Z:sp(Bi: leN)).

By (9), I,enma

10

and

(25),

(33) Y:sp({u,: øeN}).

We intend to apply I,emma

S,

It is well known and

easy

to

see,

that

(34) s@) : z.

By

l,emma

6, (31), (84),

(32), (29). (28), (27),

and

(33)

E(81)

: r'¡E(B) : T*(z) :

sp({E,:

i

e N})

:

sp (iZ,

: 1 < i < .r]) : (¡/*)-1(y).

On

the

other hand,

by

I,emma

6 and

(80).

3(8,) : (¡/*)-r(E(u)).

then, by

(19)

-'

"j',Î', li'J

" :iJrïp,iärÏ lii]

:

B¡,

I,emrna

5, the set B, is

antiproximinal

-tt

(ro, ]l'.1Þ), Q.E'D'

-' Ño*,

sinôe

Il is arr isometiic

isomorphism

of

(C(coa),

ll'l)-

onto.(co, ll.ll"),

the

set

tr/r:

I/-1(Br)wi11 be an

antipioximi,al

convex cell

in C(tt), .i'Ëiôt

- -- concludei

the proof of

Theorem

1 in

Case

I.

nrmørþ..

ny (2gf and the fact that T is an

isomorphi..ol.

of

C(ors)

onto

c6,

it totlówi tûat {xr:i

e

N} is, in fact, a

basis

for

C(<oB) equiva-

lent to the

usual basis

of

co'

'

Case

II. I : Zl ), L

ø-cl,osed, subset

o/ [1,

co3] and' as e

l\'

The proof is the

same as

in

case

I, with

some changes

in the

d-efi-

nitions of the

elemente e¿, f¿, 8¿.

since c(<,r3)

is

isomorphic

to

co, -and co

is

isomorphic _to c,

it

follolvs

that

C(<os)

ii

iéomorphic

io c.

Thið isomorphisrn carries-.the

ideal 1

onto

á" i"iiàitä

áim"trsioåal closed ideal

in c.

P¡ut, every

infinite

dimensional

"ts"li¿"tt

in c is isornorphic to co. Therefore,

there

exists

an

isomorphism

(35) H:I'co,

sp({s'})

";¿i": äi

(the

analog

of

(19)).

We

observe

that, iÎ f e M(^t) is

such that

f(a) : :0 for aeÂ,

then

ll.fll

:D"=ol/(")l : ll/l'll,

where A

:

[1,

cot]\^

and

f

denotes

the

restriction of

f to L

'Iherefore,

/ is a ttot--pt"sétrrìttg

"*i"nsion of .fl, to C(.t). We shall

define g, e

'e M(us),

suchthat g,(i) :0 for

a e

Ä

and

for

g e s/({gr}).

s(g*)

O

s(s-) +ø'

Then, by the

above

quoted result of R, R.

Ph.elps,

the restriction

of

g to I

does

not attain its

supremurn

on

U'

I,et A : [1, <o3]\Â

and

let

d1

1ct2 <,..'

be the accumulation points of the set

A of the

form (2e)

(8)

r40

and

I,et

now

S, COBZAS

l4

15

Put

ANTIPROXIMINAI SETS 1.47

ct¡:

¡¡2

.

),,,

1 <

À, <,<,1.

I!

a, e _A

then, by the

closedness

of the

set

 there

exists

a

riurnber

tu, i 1jo l

<¡, such

that

(36) l"' '

(Ào

-

1)

+ ^ ' lo ]-1, 02 tol -

A.

By the

properties

of ordinal

numbers,

it will exist a

homeomorphisrn

(37) I¿: [,

<^,']

* [.r .

(Àe

-

1)

+ a

. te

-ll,

o2

.

to],

(rlocanbedefinede.g.by nn(i):c¿r.(À¿-

1)

+

^.toi_i,forl ( i(<¡2,

no(¡.i.'):

o2

'

ì¿)

Put

E"o@):

x(o-h)

+ 2-tr+tr. Ð (-t¡t2-t.x(r¡[email protected].)),

I d. 1-

-

f.or

i en¿(il,

cor])

in

rest,

for h:1,2,

IT.a.2.

eh¡

eA O,o''

(Ào

-

1)

* t'

lu, ø2 . ),,01.

By

(37) there exists

a

number

7'

such

tt'at ae,¡:r¡*(co . j'). Put 8"u,¡Ø):

x(an,¡)

l2-ta+¡ D;:î''tl (-l)t2-tx(\o(.'i))) *

-L

9-&+/+tl \\

1 <i<o

(-t|t 2-;*(rlo(.

' oj,(i))),

,.\ f I

f.or

i er¡u

",0,r(r)

:i

o in

rest,

Íon,j:8oo,i-8o'

([1, .'])

II.å,

øo

4

A

edoU')

öoo'

g*0,,@)

:

x(oe,¡)

I 2

to r'i.r-l)

rD. (- l)i

2-tx(r¡¡,¡(i)), e,o,¡(i)

:

Lot

i :

un,i

in

rest

8o¿,

i I

crp]1ctp2{.,,

, 0

be

the

accumulation

points of the

set

A of the

form dh¡

:ot'

(À*,;

-

1)

+ a,

FLp,i,

I (

À¡,¡, Va,i

{a,

belonging ø,,

onlv is a finite the last .to

numbeJ

the of interval

ør).

gf fn oo,'.iã'"o{side} tLis

Loo-,r,

ool;

(W-e alsä

put the interval

do

: I

and,

ii,, if .;j-irrãià there

are case

there exist th"

hom"ãmorphisms

(38)

'r¡n,i:

fl,

<ol

* la¿,j-t;

dn,¡f.

we

have

now to

consider

sorre different situatio's. The

symbor oo wilr have

the

same meaning as

in

(1S).

IL a.

uo e L,.

Preserving the notations

fro'r

(36),

we

consider trre sub-cases

II. a.l.

a.e,i e A,

f)

loo_r,

., . (t, _

1)

+

^ .

tol.

Put

9"0,,@)

:

x(qn,¡)

+ 2-&+i+t),à.(_l)t2-tx(r¡¡,¡

(i,)),

"no,¡(i): f I for ie lr'¡([1'

co])

ì

O irr

rest, f _s

J a¡,¡ - oep,¡t

where r1a,¡

is the

homeomorphism (Bg).

1

r-

ah,i

Let now

pass

to the isolated roints of ll, .tj which

belons

to

A.

By_the

homeomorphism

(38),

every isolated

point-ø from A n] &*,j

t,

ø¿,i[

is of

the

form

a

:

T*,¡(l)

for a

number

I e [], .[. We

considãt lon,

the following

cases:

ILø.1.a.

øre L,

a¡,¡ e

LO [oo-t,,o' .

(À¿

- t) + ^

.

li

(see (36)).

Put

sn@)

:

x(a)

{ 2 (A+r+1)D::i'tl (-t), 2-t

. x(\r,,(í.))

|

x(r¡o,uþ¡þ)))'

| 2-ln+i+r+t)

1<¡l<o

D (-t¡t .2-t

'

1 for i:u 0 in

rest

-òo e"(i)

:

Jdf ÍLø.2.a..

æ¡

e À,

a-¡,¡e L,

ñ].t '

(Ào

-_ 1) l. .lu,

ocol(see (36))

In this

case,

by

(37),

there exist l, j' = ll,

cof, such

that

ø:I¿(<¡.(j'-

1)

+4

(9)

ÀNuÞnoxtvtNAL sETS 143

I+z Put

s, coBZA$

g"(x)

: x(") +

E"u,o@)

-

x(oo,¡)

I

l6

Å:8,-8o¡,j-8a¡.

II.b.a.

a.p

ø L,

ø.¡,7 À.

ßr'

(38), there exists

I e ll,

co[, such

that a:7¡,¡(l). Pú g"(x):

r(o.) -l-

2 fttitrt [i-i

t-

-

ofle can write

Z(It):Xrq OXÀ"OX' in

Z(Tn)

=

C(o'?),

of

Lemma

3,

we

ifcoz'ieJ\¿w a

manner' we o

or. ZQr).

Z(L):Zr@.'.@Zp,

whereeachZisisometricallyisomorphictoaninfinited'imensionalclosed

iå;;i"t(^1i1" -ci.'¡

such

ihat Ltn-:Ø or

<oÞ G ¡'

he{1,2,3}' For ø eZ('tt), x:zt+ "'lzp' zi =Z¡''

'll, "',

llzrll)' BY. Case

I or

Case

II

uä t"tipiótäminal

convex

cell'

Rea-

L"*-u 3,

one can show Llnat

Z(L)

:tt'

REËDRENCÞ

S

lll

A rn i

r,

D., cou.linuouß fu.nclion sþøces. uùh^lltc bott'tttlrtl exlension þroþerly' Bull l{es L^r '^

"---'cãtt".

oI Israel, 10F 133-138, (1962).

unaiouote JnHotrcecmsa o npocmpaHclnlax co t7 c

en "ipàott, 1967.

Archiv der Math' 10, 162-169

I,

Warszarva 1971' zawa 1965.

Berlin-Heiclelberg- New Yrok' Ill|3yxoeuuxuirC.I4.,o¡tuuu¡raltt,llølÍpacluupl:Htnx,lrLneúuorsttþgunt,uouaaoaBllpocmpatclnse

HenpepbtsHbtx,par-i"ñi'I"l';;;;' ft^v;--Ccdlj' ctp n'artn''zt;

s

1to0 - nzz¡'

ncceived 30.6.197G. Utliuersily Babe-ç-,Bolyai' Cl'uj-Naþoca

Instilute of Mathematios'

-f 2-tt

+

-i+,r-r)

1<i<o

D (-

1)o

e,(i):

2-n '*(\o@'(j'-

1)

+

",(t))),

1 for

tt.

:

a-

0 in

rest

(-l)'

.

2-¡ .

x('r¡x,¡(t))

+

+2-&+i+t+.1) D t_\n .z-t .

x(7¡,¡(o,(i))), 1<i<o

I I lori:q.

""(t):10 inrest Å:8"'

rr.ð.p

a"h

ê L,

au¡

ê

L,

If

q.

:'r¡n,¡(l), prt

g"(x)

- x(") i

z-th)i+t)

D

f

-l)t .2-1 .

x(^nn,¡. (",(l))),

l<i<o

eo(i): 1 for i:ø.

0 in

rest,

'å:òo

I'his

finishes

the

definitions

of the

elements e¡, -f¡,

gi in

Case

II.

Cqse

IIL I : Z(L), L + Ø

ønd' c¡3

ê I\.

This

case reduces

to

Case

I or to

Case

II.

Since

r\ is

closed, fronr

<,f

e ,\. it

follorvs

the

existence

of a

åo

e [,

<o

[,

such

that

fc^r2

'

(Ào

*

* l), .t] c A,

where

A : [1, <ot]\^.

Denoting

A,

:

ftoz

' (i - l) + t,

@'

' i], f¡ : [, .']\A¡,

¡ :

fl.t\, X¡:

Z(/\¡),

f:[1,^r.kol, X:Z(l),

Referințe

DOCUMENTE SIMILARE

It is easy to see now that the similarity dimension of a self-similar set generated by a finite family of Matkowski-Wegrzyk type operators on a convex complete metric space can

Lipschitz duals, meaning spaces of Lipschitz functions on a metric linear space, were used to study best approximation problems in such spaces (see [10]).. A good account on

Using James' characterization of reflexivity in terms of support functionals of the unit ball, V. Thompson [13] - the Banach space cs contains an antiproximinal

In a precursory study of Yitale [6], the approximation of Ifaus- cÌ.orff continuous sel-valued functions rvil,h compact convex values in a.. finil,e rlimensional

Iulrodrrctiull&#34; '-l.he l.ell-lcno\\¡rì resulbs on the Korovkin ¿ìpploxima- 1,ion o[ continlrous leal-valuec1 functions h¿1,'se playecl a crucial rôle jn the

of Tapia's theorem to the complex case and provirles rnore infolmation. in connection rvith the rcpresentation element

of red.uced lteimite interpolation to fill up cerlain gaps in the finite element construction of recfangular elements' It is the topic of a forthco-.. min he

(ìTisnrxc and.. GErrRrr\G ls p1pcr.. Ame¡, cient of quøsiconformatity. a q-uasi,aottforntal ntaþþittg in Army. Arkiv för Math.. nd p_caþaci.ty. Axa^