• Nu S-Au Găsit Rezultate

View of On the monotone convergence of an Euler-Chebysheff-type method in partially ordered topological spaces

N/A
N/A
Protected

Academic year: 2022

Share "View of On the monotone convergence of an Euler-Chebysheff-type method in partially ordered topological spaces"

Copied!
5
0
0

Text complet

(1)

Tome

XXVtr,

No

l,

199g,

pp.

23-31

ON TTTE MONOTONE CONVERGENCE

OF AN EULER-CTIEBYSIIEFF.TYPE METHOD

IN PARTIALLY ORDERED TOPOLOGICAL SPACES

IOANNIS K. ARGYROS

1,INTRODUCTION

- In this study we

are

concemed with the problem of approximating a solution x. ofthe nonlinear operator equation

(l) F(x) =

0

in

a

linear

space 81,

where F is defined on

a

convex

subset

D of D1 with values in

a

linear

space

82.

We

have

recently

shown

thât if .El

arid

Ezare

Bànach spaces, then

under

stan- dard

Newton-Kantorovich

hypotheses the Euler-Chebysheff-type method

of

the

fonn

(2) ln=xn-lxn,xn]-'¡'(r,)

(3) xn+1= yn -f)ín,xnf-'(fx,,!,f-l_x,,x,l)(yn-xn) xo eD (n20)

converges

with order almost three to a locally unique solution x*

ç

D of equation (1). Here [x,y]

denotes a

divided difference of

order one,

which

is a

linear

operator.

we introduce

and study

the monotone

convergence

of

the

iterations {a,}

and

{x,l

@

> 0) given by

(4) F(a,)+fxn,xnl(wn -u,¡=g

(5) F(x,) +fxn, xnl(yn - x^) =

0

(6) (fx,,!nl-[x,, x,f)(un-u,)+fx,,xnl(u,*,-w,)=0

and

(7) (lxn,l,f-lx,,x,l)(y, -xn)+lxn,x,f(x,*t-U)=0

to approximate

a

solution

x*

of equation (l).

(1991) AMS (MOS) Subject Classif¡cation Codes. 65H10, 6SJl5, 49D15, 47H17

rvhere

Rro*r.',

=

9',0

*'h('

- x).

Choos

ing

s

='2k

+

2' in (6)' from the boundness of h, Lemma 2 md the Cauchy inequality it results that there exists a constant y which

depends

on

fr and d; such

that

QlÏ)Rru.r.") (x)

< Ym-(k+r)

'

l

Theorem

3

follows from (3)

and

Theorem 2' REFERENCES

l.

B. Della vecchia,

on

the approxìmation of functions by means of the operators or D' D' stancu' Studia Univ. Babeç-Bolyai, Mathematica, 37,

I

(1992)'3-36'

?..A.

Di

Lorenzo and

M.

R.

-Occorsio,

Polinomi

tli

Stancu, Rapp' Tecnico, no'

l2ll95' I'A'M''

Napoli, 1995.

3.

ti. H.

Gonska and

J.

Meier, Quantitative theorems

oi

approximation

by

Bernstein-slancu operators,Calcolo 21 (1984), fasc' IV,

3l'l-j35'

4. G. G. Lorentz, Bernstein Polynomials,University of Toronto Press' Toronto' 1953'

5

G.MastroianniandM.R.Occorsio,Sullederívatedeipolinomídistuncu,Rend'Accad'Sci'Fis' Mat. NaPoli, 45,4 (1978),n3-281'

6. G. MasUoianni and M. R. Occorsi o, I)na generalizutione (lell'operatore tli Stancu' Rend' Accad' Sci, Fis. Mat' Napoli, 45, 4 (1978), 495-511'

'7.C.

p.

May, Saturation and inverse theorems

for

combinations

oJ'a

class

of

exponential-rype oPerators,Canad' J. Math., 2E (1976), 1224-1250:

8. G. Múhlbach, verallgemeínerungen der Bernstein- und lttg,range-Polynome. Bemerkungen zu einer Klasse linearer Polynomoperatoren von D. D. Stancu, Rev. Roumaine Math' Pures Appl. 15, S (1970), 1235-1252.

9. R. K. S. Rathore, Linear Combinøtions of Linear Posítive Operalors and Generating Relations in

S p e c iul l' u nctions, Thesis, I.l.T., Delhi, I 973'

10. D. D. Stancu, Approxirw.ttion of functions by a new class of linear polynomial operators,Rev' Roumaine Math, Pures Appl., 13,8 (1968), 1173-1194'

11. D. D. Stancu, IJse of prohabílisric methocls ìn the theory of

uniþrn

appruximation of continuotts .functions,Rev. Roumaine Math. Pures Appl', 14 (1969)'

673491'

12. D. D. Stancu, Recurrence relations

for

the central moments of some discrete prohability laws, Stuclia Univ. Babeç-Bolyai, Cluj, Ser. Math.-Mech', 15,

I

(1970),5542'

13.

D. D.

Stancu, Approximaiion properties

ttJ'a

class of linear positive oper\tors, Studia Univ' Babeç-Bolyai, Cluj, Ser. Math'-Me¿h., 15, 2 ( 1970)' 33-38'

14.

D. D,

Stancu,

on

the remainder

of

approximation of functktns by means oJ'

a

pararneter- dependenr linear polynomial operator, Studia Univ. Babeç-Bolyai, Cluj, Ser' Math'-Mech',

16,2

(1971),5946.

Received November 15, 1997 " Bab e S - B o lYai

"

U nive rsitY, Faculty oJ Mathematics and Computer Science

l,

M.Kogölniceanu St., 3400 Cluj'NaPocø,

Romania

L

(2)

Ioannis K, ArgYros

The

Euler-ChebYsheff method

(or

otra [7]. Ul'm used divided divided diffe- orem

[7,

p'91]'The

order

ofconvergence

of our iterations is almost

s

oforder

one

onlY'

2. MONOTONE CONVERGENCE

On the Monotone Convergence 25

Moreover, if

the

operators Ar=fx,,x,f are inverse nonnegative, then any solution

u

of

the

equøtion F(x) = 0 in (uo, xr) belong to

(u*

, x')

'

Proof. Let

us

define

the oPerator

.ff

:(0,.t0 -un)-+ 81, PtG)

=

x - Bo(F(u,r) + Ao@)'

This operator

is

isotone

and

continuous. We

can

have in turn 4 (o)

=

-aoF(uo) 2

o,

4 (xn -t o) =Ío -uu- BuF(xo)+4(F(xo)- F(uo)-lo(xo -an)) 1

xtt

-

uo + Bo ([-xo

,uo]-

[x6 , xe

]) (xo -

uo

) þy (9))

1xo-uo,

since

[-xn

,urlS

[xu ,

t¡ ] by (12).

By Kantorovich's theorem [4], operator Pt has a fixed point z,

e

(0,

x o

-

u o)

:

Pr(z

r)

= zr

. Set

u o = u 0 + z

r, thenwe

have estimates

F(uu)+

An(w,',

-ro) =

0,

F(uo)

=

F(wo) - F(uo

)

- Ao(wo- on)

< o

and

uo

<llo < xo, We define the

operator

Pr:(O,x0 -ut¡) + E', Pr(x) =

tt

- Bo(F(ro)+ ln(x)).

This operator

is

isotone

and

continuous. We

can have

in turn

Pz(0)=Bu¡(-ru)>0,

P,

(*

u

-

to

¡) =

x o

-

u o

r

B oF (u.t

u)+

Bo

(F(xu

)

-

F (w n)

- A,

(x u

-

u

o)) <

lxo - wo+ Bo(fxr,wr,]-lxo,xo]) (¡o -Ø,,) < (by (9))

1 _ lJ)ç¡

r

since

[.ru

,ur]3

[xu , xs

]

bY

(12)'

By Kantorovich's theorem there exists z, e(0,

x,¡

- uo) such that

Pt(rr)

=

zz.

Set

lo

=

ro - zr, thenwe have the

estimates

F(¡u)+Ao(yo-r,,)=0,

F(Yu) = F(lo) - F(xo) - AuQu-rr,) )

o

2 3

24

Weshallassumethatthereaderisfamiliæwiththemqaningofadivided difference of order on" un¿ the notion of a partially ordered topological

space

(POTL) ([1], [2]' tZl, iql)'Moreovet' from now on we shall

assume that

ù

and E2

are POTL-sPaces.

We .átt no*

state the main

result'

Tlæongvt|,LetFbeanonlinearoperatordeJìnedonaconvexsubsetDofa regularPoTl-spacenlw¡thvaluesin-qPoTL.spaceE2'LetU0andxgbetwo

SupposethatFhasadivided'dffirenceoforderoneonDn=(uo'ro)=

= {x eE1

luo <

¡ I xo} ç D

satisJYing

(10)

Ao

=fxo, xol

has a

continuous nonnegative left

subinverse Bs

' points of D such that

(8) (e)

(1 1)

(r2)

and

(1 3)

(4]'l.7), (14)

(1s)

uu3xo

F(u,,)<0<F(ro)

u0

<wo <ut < 3ll), 1un*t 3

xr+t 3

ln 3 "' ( rl (

Yo

3 xs' limr)-=t)' , lim

,-+* "

n-+ú

and u'

,

xo

e

D, with u* (x'

[xo,Y]20 for all tto3YSxs' [x,u]-[x,Y]<0 iÍ u<Y

lz,wl+lw,ql-lz,zl-lu,zl20 if uSw<z for some q e(u'z)

'

Then there exist

two

sequences {un\'{x'\ n20 satisfuing approximations

xn=x

(3)

and

Lo(yo -"u)<0.

From approximation (6)

we

now have

Ut

- uo =

tÐ0

* Brlr(wu -

uo)

-

wr,

= BnLu(wo -ro)

2 0.

Hence, we obtain

u)o

1uo.

Moreover, from approximation (5) we have

x't - lo= l, i Bulu(y, -rr) - lo= BoLo(yo -xo)10.

That is, we get

)ct

I lo

Furthermore, we

can

obtain in turn

u

t - x'¡

=:',:7,'lï:r:,;,' -l:...7 !;jí=

- "'

=

- uo BuLoF(uu) - (xo - BoF(x,,)) +

+

BuLo(u, - BuF(un - BnF(uu)) -

BnZo (uu )

+ +BrLoQo) - BrLo(xo - BrF(xo)) =

.

= u0

-

x,0

- Bo(F(uo) - J¡(¡o

))

-

B0L0E0(F(¿o )

- F("r,, )) =

=

(I - Bslus, xof - BoLrBofuo, xrl)

(ao

- ro

).

But using

hypotheses

(12)

and

(13) we

have

B0L,B,lt)r, xul+ Bofun, xo)S

B0L0B0A0

+

Bofuo,

ro ]l

<

BrLu +

Bn[uu, 'xo ]

I Bo(Lo

+ [uo, xu

])

<

3 Bolyo, qlS BrAo 3,L

We

now obtain ut 1xt.

From all the

above

we

have

uoSuo1ut1x,1yo3xo.

By hypothesis (12),.it follows that the operator An has a continuous nonnegative left subinverse 4 for all n> 0. Proceeding by induction, we

can

show that there exist two sequences {u,), {xn} (n

>

0) satisffing (4) - (7)

and

(l ) is

a

regular

space E1 and as such

they converge to some u' ,x' eDo. That is,

we

have

)y_r, =u' 3x.

=

]*x,.

l

and

urr

Swrr 3

Yo

< xo.

We now define the

oPerator

P¡:(0, xo -uo)-+ Et, Pr(x) = x - Bo(LgBrE(uo)+'4n(x))' where I, = lxo

, r,r ]

-

lxo,.Yn

]'

'Ihis operator is isotone

and

continuous' We

have

in turn Pr(0) = -BoLoBoF(un) 2 0 bv (9)

P,

(xo -

It

o)

= xo

-

u o

- BrrLrBoF(x

o)

+ +Br(LoBo(F(x,,

)

- F(uu)) -[¡n, x'

l

(ro -'o ))' But, try (11)

and

(12), we

can

liave

L.B,,F(x

o)

- F(ao)) - [xo, xo] (ro -

/u )

=

..

= (Lo/,o[xo,

uo]

- [x,,,

xo D

(xo -

uo )

<

<(Io -lxo,xo]) (x, -uo) I -[xt,

J¡o]

(xo -uo) I 0'

Therefore, we

have

P,(to -uo)1xo-u,¡'

By Kantorovich's theorem there exists z, e(0,

xo

- uo) such that

Pr(rr)

=

z¡. Set ut = uo

+

zr, thenwe have

estimates

- Lr(wr-ro)

+

Ar(uo -Øo)

= 0

and

Lo(wr-au)20.

Furthermore,

\rye can

define

the

operator

&:(0, xu -

0o)

-+

Er

, Pr(x) - x

+

Br(LoB,rF(x

u)

- AuQÐ'

This operator is isotone

and

continuous. We

have

in turn P4(0) = BoIo-BoF(xo)> 0 bY(9),

Po(xo -uo)=

xo

-uo l BoLoBoF(ur)+

+

Bo(LoBo(F(xo

)

- F(uo)) - Ar(xo -

uo

))

< xo

-uo

(by using the same approach as for P¡). tsy Kantorovich's theorem there exists

z o e

(0,

x o

-

U

o) such that

Po

(, ì

= z

o. Set

X

t

=

!

o

-

z

o, thenwe have

estimates

-Lu(yo - ro) + Ar(x, -./o)

= 0

(4)

On the Monotone Convergence 29

Hence, we

get

0> 9-t F1u,))

un

-u),,

0

< 9-I F1x,)3

xn

- yn.

Since E¡ is notmal and 1im

(un

-w,)

=

H (x, - y)

=

0, we have ,lim Q-t Flun¡=

=,lg Q-t F(*,)

=

0.

ftrence,

by continuity, we

get

F(u' )= F(r. ) =

0.

(c) As

above,

we

get

02 F(a,)2 R(u, -w,),

0 <

F(x,)

<

R(x, -y,).

Using

the

norrnality

of Ez and the

continuity of F

and R, we

get F(u.

)

= F(x* ) =

0.

(d) From the equicontinuity of the operator

An

we have

,lim A,

(u n

-

u

n) =

=,lg An(x, - yn\ =0.

Hence, bV

(a)

and

(6)

F(u")=F(x')=0.

(e) Using

hypotheses

(10) - (14), we

get

in turn

0

( F(Y,) = F(Y,)- F(x,) - A,(Y, - x,)

=

=

(An -1.!n,

xn))

(x, - y,)

<

([xo, xof-l**, x' l) G, - y,).

Since Ez is normal and lim (x, -!,)=0, we get lim F(x,)=Q. Moreover,

from hypothesis (12)

[x*, ¡*] ("n -

*n )

I [,r-, xn)(x, - x'

)

=

= F(xn) -_F(¡.) ( [ro,

xn ]

(x, -x')

and by the normality of E2,F(x-)

=

j_T F(x,).Hence, we g:t F(x-) = 0. The result F(u- )

=

0

can be

obtained similarly.

The proof of

the

theorem is now complete.

As in Theorems I

and

2, we can prove the following result (see also [7, Theorem

6.21:

Trmonuvt

3. Assume

that hypotheses of Theorem I are true.

Then

the appro- ximations

lr=xn-BnF(xn),

xn+t

=yn+ BnLr(yn- xn), Ln=fx*xrl-fxn,!rl

,:

( ,i , un =un - B,F(un)

7

lf

u,, < u

1 xtt aîd F(u) =0, then we

can

obtain

An(Y o

- u)

=

Ao(x

o

-

-Bo

F(xn )) -

Asu

=

=

Ao()(o

-

u)

- AnBr(F(xo

)

- F(z)) =

=Ao(I_Bo[¡n,u])(xo_u)20,sinceBu[x9,uf<BoA,,<1.

Similarly, we show Au(w, -

a) <

0'

Iftheoperator,4gisinversenonnegative,thenitfollowsfromtheúï.:

*o 3,3 yo. i'ro...Airrg by induction, weãeduce that

w n

3

u <

l" from which it follows that wnlunlun*t31t3!n+t3xn1!n' fot all n>0' That is' we

have

u, 1u3 x, for all n>0'

Hence,

we get u' 1tt< x'

'

That

completes the

proof

of the

theorem'

ln what follows, we shall give some natural conditions under which

the

points u*

and

x* aresolutionsof equation F(x)=Q'

TITEOREM

2. Under

hypotheses

of Theorem I

suppose

F is continuoîts at

t)*

and x'

. IJ one

of

the

folowing conditions

is

satisfied (a) N' =y" ' terator

Q:E', -+ Er' (Q(0)=0) which

(b),El

¡s

normal and there

exists

an

op

has an isotone inverse continuous at the origin and such that An<T for sfficientlY large

n,

(c)EzisnormalandthereexistsanoperatorR:8,-+82(R(0)=0)conti-

nuous

at

the

origin

and such

that A, 3 R for stfficiently larg

n,

(d) operators

An

are

equicontinuous

Jbr all n20'

qnd

(e) Ez

ß normal and lu,u)<Íx, yl if

u <

x ønd

u <

y'

thenwe

have

F(u.)=F(x.)=0'

Proof. (a) Using the continutty of F and F(u')30<F(x')' we

get

F

(u. )<

0

< F(u. ). That

is,

we obtain F(x

-

) =

F

(u"

) --

0' (b) By (a)

and

(6)

0

) F(u,) = An(u, - u,)>- Q@, - w,)

0

I

F

(r,

)

= An(x

n

- Y,)> QG, - Y,)'

Ioannis K. Argyros 6 28

(5)

6.

M.

T. Necepurenko,

on

chebysheffs method for functional equatiors (in Russian), usephi Mat' Nauk., 9 (1954). 163-170.

7. F.

A.

Pota, on an ileralive algorithm of order L839 ..' Jor solving nonlinear operqlor equations' Numer. Funct. Anal' Optimiz'' 7

(/),

(1934-1985)' 75-106'

g. s. ul,m, Iteration methods with divided diferences of the second order

(n

Russian), Dokl' Akad' Nauk SSSR, 158 (1964),55-58' Soviet Math' Dokl' 5' ll87-1190'

g. J.

A.

Vandergraft, Newton's method

for

convett operators in partially ordered spaces,

sIAM

J'

Numer. Anal.

4

(19ó7), 406

-

432'

Received August 10, 199ó Deparlmen! of Mathem atics' Cameron (lniversity, Lawton, OK 7i505'

U,S,A.

30 Ioærnis K. ArgYros

and

un*t

=ll)n

+

BnL'(wn -l)')

\)here the operators

Bn

are nonnegative

'ubinverses of

Ar, generate two

sequences

{u,) and {x,\(n'0¡' satisfying"approximations (4)-(7) and(14)' Moreover'for iny solution u e(un, xr) of

the

equation F(x)

=

0 we

høve

ue(ur,x,) (,¿>0).

Furthermore,ctssuruethatthefollov)ingaretrue:

(a)

E2

is

a

POTL-space

and

E¡ is

a

normøl POTL-space;

(t ) ,l1x x, = x* and lim Ü' =Ü*;

(c) f'rs continuous at u* and x'

;

and

(d)thereexistsacontinuousnonsingularnonnegdtiveoperatorTsuchthat ß,,2T for sfficientlY large n'

Then

F(u.)=F(x*)=0'

Remarlc.(a) our conditions coinci

te

with (44) and(5Ð in [7, p. 98].In

case

El=åz=[R,ourconditions(12)and(13)aresatisfiedifandonlyifFis

ditferentiable

on Ds

, aîd F,F'are convex

on Do '

(b) It followu ao- ui tlr" above that otlr method

uses

the same

01

simpler

conditionsthanthoseusedinallpreviousresults(t4]_t9])buttheorderof

convergence is faster [3]' (c) Similar ,.roi,.

"* immediately follow if the divided difference

[x0 '

xs'l is replaced by lxo ,xttfuttlzo3x" in (10)' lx"xn] is replaced by [x" ln-tf

(n>l) in(a)-(7).

REFERENCES

1.I.K.Argy'os,andF.Szidarovszþ'OnthemonotoneconvergenceofgeneralNewton-like

m e t h od s,B ull. Austral' Math' Soc'' 45' (1992)' 489-5 02'

2.LK.AtglTos,andF.Szida¡ovszky,TheTheoryandApplicationsoflterationMethods'C'R'C'

Press, [nc. Boca Raton, Florida, U'S'A' (1993)'

3.

I.

K. Argyro s, On lhe

,oní"'g'n'"

o¡ ChebysheffHatley-type nethod under Newton-Kantorovich

h yp o t h e s e s,Appl. Math' Letter, 6, 5' (1993)' 7 l-7 4'

4.

L .v.

Kantorovich, The method

of

successive approximatiott for functional equotions' Acta Math''

T

(1939),63-97.

5.

M. A.

Merwecova,

An

analog

of the

process

of

tangent hyperbolas

for

general functional equations(in Russian), Dokl' Akad' Nauk SSSR' 88 (1953)'

6ll-614'

Referințe

DOCUMENTE SIMILARE

To establish the formula for the tangent vectors at the end points of a Stancu curve we will first transform the Stancu curve into a B´ ezier curve to obtain a relationship between

In the very recent paper [5], Strichartz investigated the behaviour of the arclengths of the graphs Γ(S N (f )) of the partial sums S N (f ) of the Fourier series of a piecewise

Stancu, Approximaiion properties ttJ'a class of linear positive oper\tors, Studia Univ' Babeç-Bolyai, Cluj, Ser. D, Stancu, on the remainder of approximation of

Zhou, Best direct and converse results by l^agrange-type operotors, accepted for publication in Approximation Theory and Its

Devore, The Approximation of Continuous Functions by Positive Linear operators, Lecture Notes in Mathematics, 293, Springer Yerlag,7972'. Starrcu, Approxintation of

Stancu, On the remainder of approximation of functions by nteans of a parameter-de- pendent linear polynomial operator, Studia Univ.. Stancu, Representalion of Remøinders

(lONYlìIìGlÌ\i;lì 1'lIIìolllìll. [)oncorningccluatiorr(1.1)ancltlreiter.ations(1.2)_arrcì11.3)l'ehar'e llrtnolturt

ln this papcr', s'c sìrall extencl some 'n'ell-knorvn l¡asic results in monotone operlatoLs to the cla,ss of Jf-rnonotone opelatols.. The opelator á is