• Nu S-Au Găsit Rezultate

View of Duality relations and characterizations of best approximation for p-convex sets

N/A
N/A
Protected

Academic year: 2022

Share "View of Duality relations and characterizations of best approximation for p-convex sets"

Copied!
8
0
0

Text complet

(1)

(5)

^iro

: E {-r,'-" (l )

Norv, using

the relation, t+l ^"a-t5),

rve

can

easily

^

Le1,

us

supposc

that /(rr) :

e,(n)

: nr¡

ø e 10, 11.

:0, 1, ...¡lL. In this

caso, Trorn (5)

ii,

results

that

(6) ^% : t. I ,-1)i-'/lnl"".

It'v:O \U/

Using

the idcntity

(see

[7],

Problem 189,

p.

42)

É t-ti'

)t

g4 DORIN ANDRICA 2

_

Since

the

operators

I

ancl

Â

comrnute,

applying the binonial for- rnula, flom (3)

rvc get

(4) t),(f

; n)

:

,\^(r)

L, Ío *,.

lYe recall that

(sec

f3l pp.

3a)

IL\TIlIl\IrVI'I0¡\ - IìE\¡tjll l)''\N¿\LYSD N[.rIIIilìIQI]lj lì'r I )E .l.l ltio n Il,: I)E r.,,{pptìo-\ ItrA'l' IoN

tr,,ÀN¿LLYSIt

NUtuiìRIQUE rì'l' LA 'l'Hit0ntH lllì L'ÂPt

-flOXI[,IATtrON 'llorrro

16, N' 2,

1gl}7, ¡rp.

Ð5-lll8

DU-A.I,ITY IIE LÄT

IO N S

ÄND

C IÌ-A Iì AC

llE

R

IZÄT

IC

NS

Or' BDST API'ROXIMATION IiOR p-CONVEX SIITS

S'|IìF,A.N COIIZASj and IOAN ¡{tlNTlìAN

(Cluj-Nrpoca)

1. Introductiol. A

subset

of a vector

spacc

is said to be

conuefr

if

together

u'ith any

1,rvo of

its

points

it

conl,ains

the

rdrolc

line

segrnent .,ìoining

them. J. von

Neurnann [16],

in

conncction u,il,h t]re

inttoduction

,oT

locally

convex topologies,

rcquiretl that onl¡'thc

rniclpoinl,

of this

seg-

ment

belongs

to the given

set,

tlefining "2

so thcr

a -.otl."* sots. J. \'\'.

'Gleen

antl \\'. Gustin [8-l tlefinctl and studictl thc

cluasiconyex sets : a, sel,

in

a

vcctor

space

is

called quasicon,aen

if

tclgcther

rvith an)' tu'o

of

îts points

,r ancl 17

it

contains

all the

points. tlividing^

lhc

segment

ln, yl into

a

ratio

belonging

to

a prescribecl set

A

c'10,

1[.

Sotne extensions of the

notion

of c¡uasiconvcxil,y rvere gir.en

b)'4. r\loman

[1'l anrl Gh. loacler

1221.

flhis

paper

is

concernecl with ?-corìyox sets,

i.o.,

cluasi-convex sets

rvitlr A : I'p),

n'here

p is

a given n rrnbel

in

10,1

[. fn

othor tt'ords,

a

set

Y in

a

vector

sp¿rcc

is

said

to

be p-cortaen

il py +

(7

' p) Y c Y.

.I.he

t.-"or.-"*

sets

or

rniclconvcx

or also centretl-convex

[1

?])

rverc recent- 2

l¡'

userl

in the study of the continuity of

Jensen convex

functions ([5], l21l) and of the

stabilit-v

of

Jenstn inequalit5.

([3]).

Ono

of the

authors c¡f

tìlis

pâper provecl

in f1a]

some soparation and

support

theorems

for

tr-coìlvex sets

in

topological r.t¿ctot'sp¿ùces,

antl

gavc

in f15l a

LagrzìIìgo

rnuitiplicr lule

il-L

?-convex

programming.

ì{. P. I{ornelcltuk [12], pp. 28-33,

proved bhe

follorving

('cluality

rolal,ions" for the

best approximal,ion b-v elernrnts

of

convex sets:,

îr'rnonnrlr

I.7. IT Y is

ct, ttonaoid co'nueo sttbset, of a rea,l. nornr,ed space

X,

tlt,en,

a)

Ú'or euet'y ,r

e,Y,

th,e

tluality

t'elal,ion

inf

{llø

- yll:

y e

y}:

¡iuP

{rt(ø)

- supl*Qt),y ey'r: øt'e

-ll*1,

Jt,olcls,rult,ere

ß*: {r* eX*; llø*ll< t¡ ts

ttte ck¡seil, u,ttit

ba,ll itt

tlte cluct[, sp&ce 'Y* o.f 'Y 1 antl

compute B,(e,;

n)..

I'lrcn /, :

vs/'rs, v

:

(7) L

1

i-1)":i!8;,

vhere

¡Sì arc

Stirling's

nurnbers

of the

seconcl

kind, florn

(rt),

(5)

ancl (6),

rvc

obtain

tr,,(e,,,) _ É (i) ;j ",,,

]ìIìIì]iRENC]]S

[1] r\ tt d r i c a, 7)., Poruers lty l'lenrsteitr's opetolot's utttl sontc contbinatot ial 1:ro¡tcrtics, lLÍte- tant sentitlar ou Jnnc[iona] cc¡rratiorrs, approxinral-ion and convexity, Cììuj-Napoca, Plc- print No. 6 (1985), pp. 5-9.

[2] (l lt an 9,, G.-2., l]crttslcin polyrtotnials uia tlrc shìftitr¡1 opclalot'. Thc Amclican llathcr¡n- tical i\,Ionl-hly, $f (1984), rrr. 10, 634- 6iìåì.

[3] G Ìr c I I o tr d, ,{., O., Cnlculttl ctt difcretrle fittite , Iidif,.'fcluicir, ì3uculcçti, 1956,

[4] II c, Il ., '1'lte powcrs tlttl tlteír lltrnslcitt ¡tr.tLyttotninls, lìcal Anaìysis ExcÌralgc, tl (1983- 1984), no. 2, 578-58:1.

[5] l{arlirr, S., Ziag,ltt',2., llt:tttliottol'l>ositiucA¡tprot,intoliottO¡tcralrtrs,.I.r\¡rprox, 'flrcor'¡., :l (1970), :ì10-:ì39.

L o ¡ c rr l?., O., (',., llcrnsleitt Polytt\tnials,l-ìniÌcrsily of f'oronto Prcss, 'l-oronto 1956,, P o ly a, Cì., S z c g o, Cì., Problen¡,s atrl 'l'ltcotc¡tts ítt Attctlgsis, \'ol. I, SptjnS-cr-\'cllag"

13erlil, -Hciclelbel'g, Nctr' \or'ìr, 1972.

Iìcceivcd 20. III. 1986

U ttiuctsilalca ditt CIuj-\'ctpoca acu I la lca d c nt aletnal i cít

S lr. l{ogidrticclntL, 1,

3400 Clu.j-Napoca llontd¡tict

7

(2)

96 ÐT. COBZAS aÌ1al r. tviuN.TEaN 2

_

]1)

for

0Ì:t2t"!l ;))

e-f\Y,'tl¡ure

ett¡,ists ar¿rl

,t:l in X* uittt

llæf l]

:

1

suclt, tlta,t

. inf

ìll¿

- yll:y eY):,r;*(,ir) -sup

[a;g'(y)

:y eY).

In

Section

2 of this

ptìpet n'e shall

shol'that

llheorern 1.1 lcrnai¡s,

true if thc

sc¡1,

Ï is

supposrxl

to

lto onl¡' p-conr.ex.

Section 3

contains c¡x-

tensions

to

the ?r-couvex

Ligun

ancl

\r. G.

I)oronin conica,l constraints. Sectio oli 1u-caverns (subsets

of

a

?r-convex scl,

\'ith nonvoirl

inl,er,ior')

extcnding

sonto resull,s

provc¿ by

C.

}'r'anchetti

and

l.

Singer

[ti] in tho

conr.cx case.

\\¡o

shall nct¡rl the fclllorving

three kllon'n

I'csults :

lùruor¡nrl

1.2

([]4'1, Thcor,un 4.4)

. I.f y,is

ct,tt,tntooitl p-cotùDefr sul¡set o.f ct, real, loctr,ll,y co,n,,De!r) spcu:e -Y u,nd, ít:o e

-\:¡Í,

then, t,het,e eerisls ¿x e

-y*

srtcl¡

llt.al,

irrf

i,i'*(y) :

y e Yl )

,rr*(,r:u).

lnnorr'nrr 1.3

(114;1,

llheolcln 1,2). r.f 'r is

a, J)-cotùI)eü subset, uitlt,

't.¿ot¿.'ooitl

i.nlerior.rI

u, retil, locc,lly ft)lLr\c,tt spuce, lher_L e'uery ltrtrrrlury poí,nt ç.f

I is

utn.tuittetl.

in

tt cktsul ltyTterplt,ntt su,.pltorlitto 'T .

'llnnol¿r,;ilr 1.4 ( fl.'1, fllheorun

J.:j). r.t jl is

a ?-cotuLr0!Ð sultset o.f

a

tolto- loç1icøl t:ectot' s1ta,ce, tlten,

a)

th,e closut'e.

Y oJ 'Y ís

cctnuen;

. ¿/).i.f_tte\l,1leint lf antlO {ø{ Irtltclt d.ìt)+(l-

d")y e

inty;

in pnrticrllar,

tltc itttcric¡r e.f 'Y

is

convcü.

All tìre t'cctot'

spâces consitlered

in this

p¿ùprrr

rvill l¡e taken

oyer

thc fielrl

of leal

nurnbct,ls.

2: Dualit¡'

relatiorts I'or iu-t'.ottvt

x

srts.

l\/e

ncretl i,he follou'ing exten-

sion of a l,ell-lrnot\¡rì

separ'¿ìt,ion l,heolern

fol

p-cont'ex sets :

'llrlnonRx 2.1.

Let

'Y

untl Z be tu¡o

notll)oicl antt

disjuùtt

sntbsets r¡.f

a-toltolo¡1ical_aectot'space,Y.

I"f

'Y

is

p-con,l)et) ancl

z is

coiu;en

(,nil

open.

tlt,en, Y eutil

Z

cu,nbc sepura,ted hy a ctolctl lt,y7ter.1tlu,nein ,y.

I1'oo,f

. R¡'îh<xllenr

1,4, ø)

, the

closur,e

Y of Y is

convex.'\4'c statc

that Yî Z:

Ø. Intìe,crl,

!f

e;e_,l.

n Zrt)ten,sinceZ

isaneighbour,hoocl

of u,,it lt¡ulrl

.l'ollol'

Lhnt-Z ì y +

Ø, rvhich

contratlicts thdltypothesis of thc

l;heolem.

Nol., applying a

clir,ssical sepalation theolc¡m

(tbl,

Theo- 1er1 .9-.1),

thc

sets

Í

anri-z'aaìt'be sepa,ratt,cl

ïy

a closerl tryperiìianô

in ,r-

It

follo.vr.s

tliat Y

xnrl

Z

ale_,scrparatt.d

too by ltris

hypcrplâire.^l

.I.ho nt¡x1, lerur--ra

is

rvoll ktrou.n ancl eas.v

to plove

(seci [12],

p.

B0) :

Irlìttìr¡l

2.2.

I.f I is u

t.to¡'tnetl s,ltücte,

rl}

cvntl

n* eX*,

l,lten

sup {ø*(,ø) | ln

€,Y, lløll < r) : r.

liø*ll.

Non', we statc thc fit'st r.luality

theor,ern :

fllrtr,lon'llrr 2.3.r1-

Y is

a tùorL1)oial p-cotlDex) s,ubset qf anortneil space

x

and

n e

X,

tltetr, th,e .follotui,ttg d,ttu,lí,ty relq,lion l¿okl,s:

(1) infiilø - yll:Ue y):sup

{:u*(a)

-sìrp {u,r(ù:ye Y):n*eI)*},

I,-CONVD>( SÁiTs 97

coh'ere, P;*

:

{.r* e

-{* :

fja'F

ll <

I

} is

l,Ì¿e alose<l u,t¿i,t, l¡all

in

th,e durel sptace

Xa

o.f

X.

ProoJ.

Pttt

i:ilrf{ll.r -all;ye Y}, I:sup[,r*(;rN -sup

[e'o(y)

:yeY):tx*e]]x].

Since.

¡¿,'r(.r)

- sup

l,r{r7)

ty e Yl (

æ*(r)

- ns(y') (

ll,r;

- y'll fol all

&*eIl* and all y'eJl , \\'o ltar.e s (i. ¡\s 0e -/l*, it fó[orvs

thal,

s) 0,hencei:sinthecase i:0.

Suppose

nsrv thati>0. l3y lheo-

tem 2.1,

the

¡"r-convex

set Y

ancl

thc

open

ball Z :

iz e

-\t: llr - zll <i1\

can

be

separntetl

b¡' a

closotì h¡'pel'¡lla,:re.

lhercfore, thcrc

cxist, a,ik e

.r*

with

llø+ll

:.l

anrl c e lJ

slch thal

(2)

;irff(.q)

g

cr

q

,zro*(e)

tor all

y

e l!

ancl

all

p

eZ.

tsy (2)

Íùn([ l./eryìrnn 2.2, n'o ollta,ilr

sup{rff(y) :

y e !l} (

inf{*;fi(z) : ø e

Zl :

infl,ró*(,¿

-

to) t

u e,y,

jl¿oll

< i):lt::lÇt;) -sup{*;f(zu) :tue-,[,

llzoil

<il :,rf(al -

i.ll¡rfflf,

which irnplit's

thnl,

i -- i'

lløffll

<

,r.f(,r)

-

sup i,rl'(y) : u

e Y) (

s.

illte

itreclnalil,ies

s ( rl and i { s

g-ive

i - s

rùrì.(t'r'ht¡orenr 2.B is

Ilro\/en, I

'lhe.

Ïolktrving,tlrlorern

contains

a

conclition

ensuring

tha,t

the

su- prcrìr.unr

in thc rislrt-han(l of lclation (1) is

¿r,tta,intrd:

-

'J'ttEor¡lill 2.4.

A¿diile to llte

ltypotheses oJ ?h,corent,

z.J

th,e conditiott,

n.Él't

therc e¡¡:tists,rf; e -T*'zriritlr, llrf

ll': I

su,chi that llte sccotxl tlua,lit,y rela- l,'ion lrckls :

(3) inf {ll,i;-yll

:

ye Y):,rf(ø) -srp{¿ü(y):yey}

l?roo.f . r(ggpinu l,he notat,ion

in the

¡rroof of Theolern 2.8, l,helc ,rxists

¿ù $cquence (¿:;l)"e N

in Ii*

such

that

(4) lirn

[a,,](,u)

--

sulr {c;T(y) :

y e

y,r1 =: s.

Iì.y

l,Ìre ,Alaoglu-lìoulbalci t,l.reorc.nr,

the

closerì

unil; ball /J* is

¿ü*-corìr-

pact,

so 1,h¿¡1,

there

exisô

a

subncl, (.r;)*)rer

(/l is a

rlilt.ctc<l

set)

oli

tlic'

sequerìcrì (,r;f ) a,nrl an elcrlrrrnl; ;rf;

of

,IJ* such

t

ra,l,

(5) lirn *',fr(r') :

.r:Í(*r')

for'

¿r,ll 1t,

e,y.

I'r'onr (4) antl (5) rvith

¡6t

:

;y, u,e dt:rive

thnt

(6) lirn

sup {n*

^(.!/')

:

y,

e y rr

:

øf(*N

_

s.

3

(3)

u8 FT. COBZAS arìcl ,I. ÌVIUNTEAN

Ry

(6) anrl

(5)

rvit,h

r' -

,!/

ï, it

tollorvs

that

ri@) -

liur.,¿,1¡(J) l:eIi "

( lirnsup

,rté 1i

l.r,f^(i7'):U'e

Y.|

: øf(ø) -

s.

lhcrctore, sup

[rr$(ø) :

y

e

Y,ì ç

;rrf(e;)

-

s or', ecluivalently,

(7) s(a,ff(r) -stì.p[nt!):yeYt¡.

'Jìnking

into

account

the tleïinition of

s,

relation

(3)

is

a consecìucnco

of (7) antl

Theorern 2.3.

1o finish the ploof,

$'e hâ\'e-. 1,o

shou' that

lløf Il

:1. Sinco

ø t'

)',

i1,

follor.s

th¿r,t

s

---

i> 0

ancl,

by (3),

e;{

+ tl.

Supposing tha,l,

llrf

ll

<

1

{n'c lcnotr' l'hat

e;f; e -11*,

i.er.,

ll¿'f

ll < 1), x.e ha,ve À'erf e Il*,

u.ltore

).

:

lla;f ll-1

> 1,

anrt

s

) (À';¿f)(¿) -

sup

{(i''

atff)(:ry)

:y eY,\: l's}s,

thich is

a contlatlicl,ion. 'I.he proof of Thc'or-cm 2..t

is

complete. þ

If Y is

a sul¡set of

a

nolrnc<l spzr,cc

,li and

lr e -\1,

l;ht'n a

pro,iection

of ¿ onto

Y

(or a

best u,1tytron'intation elcn¿ent

of

,r

in T) is an

cleurent

lt ey

snoh

th¿rt ll,t,-- ltll <

llø

- y'll for all y'eY. Frorn ilheotem

2.4, one can

delive

a chalactelizntír:rt of

plojcctions

onto p-cotrr.ex scts :

Oonolr,.tr¿v 2.5.In,ortlertl¿at

ylte

ø'pro.jectíon oJ

r onto'Y it is

suJJ'i-

cietú, ctnrl

i,f Y is

'p-cotrlt)e.t:, ul,so ttccessnr'y to eæist e;if e

,¡'r

ui,tlt, th,e p?'opcI'-

ties; r¿)

lle;f ll

- 1; b)

pf(ar

- y) -

ll,r,

-'yll; c)

erü(y)

:

sup

i,rf(y')

:

!'

e

yl.

Proo.f

.

Suppose

that rj'e -f* verifics

condilions ø), i¡) arrd,c).

lhen

1ln

- yll :'rt@ - y) - nt;l - y') + [¡,f(y') -

¿-,*(y)]

(,r;f(r - y')

<

<llrf ll

lln

-!J'

li

=

ll,r

-

!J'l[

for all y'in'Y,

x'hich

shou.s

that ¡l is a

proje,ction

of

r¡:

onto

Y.

[)onverscl¡-, supposo 1,ha,t

Y is

p-conr.ex

antl lct rl be a plojcction of

ø orLto

Y.

'Ihe

functional

øf;

in

Theorern2.4 verifies

that |lrf

ll

:1

anct

(B) llr'-

y ll

:

ø¡*(r) -= sup

{¡ü(y') :y'eYl.

It lernains to shou'that

arf(y)

:

sup

i¿f(y') :

'!J'e

Y].

Oi,hclrvisc, lud'(y)

<

snp {er¡*(y') :

y' e Yl, r.e

hâ,r'e

ilø - yll : llrf ll llr - yll>ni@ -a\ -

øf(a;)

- n't(y)>

>

øð'(¡)

-

sup [e,f

(y')

:

y' e Y],

rvhich

contlzl,dicts

rclation (8). I

Florn

Clcllollaly 2.5, one ciùn

obtain a tcll-huox'n

charactcrrization

of ploìcction onto

corì\rex subsets

of Hilbelt

spaces :

r+

Conolr,Àlìrr

2.6. I'et ,Y

be

u Ílilbert

space,

Y. f,

ø e

-T\)l

ørzcZ

y e y. In

ot"cler tlt.u,t

y

be ø pro.iec,tiott, o.f

n

o'ttto

'I, it is

su,,fficient ctnd,,

if Y

is pt-conuer, also tlecess(r,ry th,ut

(u - yly' - y) <

0 .for

all y' in

Y.

p-CONVEX SDTS 99

Proo.f.

SuJ.ficiency.

We

have

llu -

U'il'

: (r - y'ln - !t') : (a -y +y - Y'ln - y + u -y'):

:

lln

- yll" + 2(n - yly -

U')

+

l[y

- y'l[' Þ

ll,u

-

Yll'

for all y'br

Y, n'hich shorvs i;hai, y

is

a projection

of

a:

onto

Y.

Necessí'ty.

If y is a plojection of

er

onto Y, thel'c cxists rf

e -tr*

verifying conclitions

a,),

b) and c)in Colollary

2.5. 13¡' Rie'sz's r'(rpresen-

tal,ioir

t'úeorenr, there

is

a

uin,ll

such.

that

ll'¿¿ll

: llrf

ll

:

1

antl ntþ) : :(zltr,) for all

øe

-Y. then (n-yl'rr,) :øf1- -tt):llæ,

All

: llæ- - yllllu,ll,

n'hich shou's

that jn the

Schrvarz inec¡uality onc has

the

equa- ø e ives

y)),,

suclt

(y it follorvs tlrat u : that

q.('t:

-

o

y). :

Sincelln

- - lt'ltt) )

0

fol

all t¡'

in

Y,

0, n'hiclr irnplies

that (r - yly' -

Directly (i.c., rvithout

appcaling

to

Coroilary

2'õ)' one

carì prove

a slightly nìorc

genct'al result :

'

lùrìoposrlrroN 2.7.

f'd

,Y be

a pre-IIitltert sptlcc, Y

c-

X,

ø e

X\Y,

a,tlcl t1

e Y. In,

oriler tltat

he ø proj'ctiort, o"f t:; ctrtto

'I it is

su/ficiey,t,und,

i.f

Y'

is

'p-cotl't)e$, tt'l,so tt'ecessq'r1¡ th'at (:t¡

-

y

ly' -

'y)

(

0 .for

all y' in I

.

Proof. 'I'he proof of

the

sufficiency

part

is the sarne as

fol

Colollar]:

ttecessit¡',

r'elnãrì< t)taL 'p"y'

+

(1

-

pto)

y"

e

Y

and all n,

Llle

property is true for

r¿

:

1

onvex. As

P^Y'

I (7 -

P'')'Y" e

Y for

¿r, /c

t,lral;

p"* nr)!/" p(pr!t' +

(1

-

pr)!J")

i +(1 - p)y"e Y. illhcrefote p"!l' +(1 -

1t"\'!1"

e Y for all'r¿e

-rY.

¡o11',

if

q is a

plojection

of ø

onto

Y and lJ e'X, then

p"!l' + (I -

p")lJ e

e Y irnplies that

ll,¡,

- yllt <

ll¿,

- p"!t' - (t - p,)!tll' -

Iln,

- lt - p"(!t' - y)ll' : :

ll,r

- yll -

21t"(;a

-'Ulll' - !l) I Jt'''llll' -

Ull'.

thcrcfort-¡r -

2p"(:t:

- llly' - y) + p?"ll!l' - yll'Ì) 0 or' -

2(n

- ylíl' - - y) + p"ll!l' -llll'>- 0, 'Jhhing

+

@1 one

obtains (r-:/lll'-y) <0. I

'l'htr next

ex¿¡rnple shon's

tìrat the p-colrrexity of I/ is

cssential

fol tho valiilit)'

oli

the

neoessit-v

pali, of Corollaly

2.5.

ììxÄrn,t,o 2.8. Ìret -L : Ilr y: [-1, 7], t : 0¡ ll : l.

'I'lten

inf{lø - !t'l

|

4' e'Il :

l,rr

- Ul: L suppose thele exists

aff eHa'

: : .Il veliäying

corrriitions

ø),

Ò)

antl

c)

in Colollaly 2.õ. then

I;rf |

: I

and 1 :

t$

- yl : r,åt(-1), giving the

cotrtladiction

-1.1 : øf(1) : sup[( 7)!t', y'e.ll]:1'

lìr,;u,tn,r 2.9.

In the

case

of the

sonl'ex se1,

Y,

tl'heoretns

2.3

ancl 2.4 rvere proved

by N.P. I(orneichuk

[12],

pp.28-33,

ancl Corollary 2.i-r

ty G.Sh. Rubinshtein fl8l

(see also

A.

I,,. Garìcavi [7]).

4

(4)

1 (10 ST. COBZAS ârid I. MUNTIEAN jp-col.lvlcx sE]s 101

Let

,Y be a norrnecl space anrl

let 1l

btr

a

c.ou(ì

in -.f. (ìivetr

n, suLt- space

Z of X,

denote

by Z'

the algebra,ic rlual of

Z.lto¡'.¿'

i¡t

Z' s'c

prLt

(11) lllø'lll :

sup{ø'(a)

: ?€Z

n

(-i'') arrtl li"ll <

11

(the

case

lll¡' lll :

oo is

not

exclu<Ie:rl).

It

is eirsil,.i.' secn

th¿t if

ill

r'

iil

< "o,

thcn

(12) ¡'(ø)

<

lllø'ill llall fol

a,ll

s in

Z

n(-Ií).

Also,

if

B'F e 7t*¡

i.c.,

z'F

is a

<tolrtinuous lin,.-ril,r,frrnctioltal an

Z,

t]¡,.,ttr

(13) lllp*lll {

llø'kll, rvhcre ilønll == sup{lr'r'(r) t,:,; e

Z,llzll <

11.

Di:note also

(11) u; :

{z'

eZ' : liie'l <

11.

Nolv, u'e

al't¡

in position to state tlrtr nrailr lcsult of

l,hjs secl,ion:

lltn:oI¿lr,u

3.3. I'et

.Y lte. ct, r¿rtrnt,etl s1tooa,, let,

I( hc

((, (()n,,ï(,l) con,e

in,

X,

l,et

Z

ltc ct subspace o.f ,Y

and

l,et

Y

be

(,

p-c()tt,t)e,1; sttbsel o.[

Z

st,r,c:lt,

'that (u I I() n Y + ø .for øll

,t;

eZ. I.f

Lh,c d,istctnce .f,un,ct,ion,

tl6(,,Y\

i,s cr¡tttitnlous at al,east on,e poin,titr,

Z

rel,cr,trí.uel,y !,o

Z,

tlt,en, tl¿e du,s,Iitlt relotí,ot¿

(15) tl.¡(r, T) -

suplz;'(r)

-

stip{z'(ø)

:u

e

Yl

:

z'

e

}}),\

It,okls

lor

¿t,Il, tt iu,

/'. I.[,

]n,()reou(ìr, ,l; e

Z \.

ll

,

then there e,t:isl.s zf; e Z¿'tuitlt, llieii'ill

: l,

stt,clt, lltot, tlt,e.l'irst stt,¡trernunt ín, tlte

riqlt.t

sitle o.f

(i5) is

q,chie"^etl

ut ril,

i.e.,

c|¡¡(:t:,

T) -:f(er) -supfziF(u): ue)ll.

]"roo.f.

Fol

rr

eZ,ltrrL

/J(lr)

: fl¡(:u, Ï)

a1rl

(16)

r9(;r)

:

sup{ø'(ø)

-

suptz'('ll)

t lt €y) r â'c 1l;) : -

sup[inf

lz'(c - y): lt e Y]

: ø'

e

Il¿1,.

Iìirst,

rve shall shorv 1,ha1,

(17)

r9(ø)

ç

ll(e;).

l3v (9), Iì(,n)-inf{ll -/,;ll : lt,e7(, irf

tue

Y}, ancl t¡-n+it_-- -fieZ lor ali

À: e

Il

such

lhat, r j-lceY c-i4. 'I'hereforc. -lr,ek

and

taking into accoult

(12)) one obl,ains

irrf{ø'(a,

-y):yeyi 4ø'(n-sì- /¡) <

lll

È'lll ll-hll < ll-Lll

for ail

ø' e

B". lahing the infimurn rvith

respect

to all

fu

in Ií

such

that

n{lceY,ii

follor.r's

thatinffø'(n -y):y eYi (

E(a;), so 1,hat ,S(ø)

: :

suprinf{ø'(e;

- y);

j/

y}

: z' e

B)} ç

1l(ø).

Ðenote by epil? the cpigraph of the

fu^nction

D,

i.c,,

epi-0:

{(ø,

")e Z x ll:

l?(a)

(

ø.1.

Sincc 14 is p-convex

(Ploposition

3.2),

its

epigraph

is a

p-convex subsel,

of 7' X ll. By the

hypothesès

of the

theorem, there

is a point

zo

i-t Z

at,

wlrich Z is contiluous.

\4/e

shall

show

that

(zo, fr@o)

11) is an inte'rior

. 3: Ilutlit¡'

I'ehtfious

frrr best appruxirnutiorr'u'i{,h nunicirI

r.cstric-

lioils. rrct -r

bc' a r.ectot npcrcrì.

-\

crti¿ò

in

-\.

is

a

norrvoid stbsot r( oly

suclr

that ),'J{ c rl for all

À

)

0.

yis

a subsrrt

of

a norrnccl spacc

x

¿urd

If is il

conc

in r,

tlenotci b.1' rlrr(

.,

Y)

,-ll +

10, oo l

thc

clistunòc fun,c- tiorr,

tlcfined

b¡'

(9) d¡;(,r,I):inf

{ll

r -Ìlll

e

T ilntl

ry

-- r

e

tii:

:inf

{ll

-hll:

tt,

eI( ¿nrl n -l-tr e Ii, r: eX;

rl¡dr,

.Y)

is

calle,d

the

l¡¿sl ctppl.o;.ri,nù(Lti,olù

o.f t; uítlt

con.ica,l, resl,r,ídi,on

I{

ltu

elent,ents irT,

I

(rvc aclopt ther convention

inf

Ø == æ).

l!ìhe

plobleur oI the

cxistcuce

of

iur. r7,, i

rr I' u'ith 7o -

¿ e

/l

such

tlrat cl¡('4 Y) ':

ll

- tloll

contains as

ptlrticular

cascil rnan.r'np¡rrorimir,-

tion

ploblerns

u'ith

lestr.ictions such ¿ls

thc

olrc-

the apploxirnation of a function ø

b.r' fur"Lctions

1or,ri(t) <

n(¿))

for

¿ril ú

in a givon

iirter.val. -,\

these proltlorns

is

ttone

in

l1lì'1, Chap.

II,

rvhdib

s,l'stelnatically applitrcl

to obtain

t¡xact st'¡lutions for' 'r'arious appr,oxirnatiorr pro)llcms

u'ith

rcrstlictions

(espcciall¡'l'ith

lespeot

to an

intitg'ral utctr.ic)

l'ot'

some concl'eto classes

of flurrctions; the

consicle,rctl appr.oxirnatitr[' 1'uitctions

rru the

substrlace o1ì

algeblaic ol

trigonomrrbr,io iolyuonri:r,lsj

the

space

of

splirrc furrctions,

a1d the

sc¡t

of fuñctions

fuar.ing"a rlegrec

of

srlootlrncrss highet,

than

bhe ¿p¡;¡6¡im¿¡t,e<1 function.

Irr

the duality

thcolenr plof¡en belou', r\-e supposc

ihal,

T

is

a, p-con-

t'¡:r

.qc',t

and /f is

a convex conc. l['he

follon'ing propositiol

sholys

that

u'e gaìn nothing-

in

genelalit"r. supposing l,he cone

,I( onl¡.

p-couvcx,

l)tr,opo;ir.r:Io¡¡t 3.

L.

[trtt¡1.¡¡ lp-cot¿pe

I

cone

is

coll,,L.e ;rt.

,

l?¡'oo.f'.

\:T, I( ltc a

c<tnc'in

a

r.ecl,or spàcrì ,.u.

llhcn If is

convsx

if

anrl

onlr-

_il

/f t I( 9 I{.

}Ience, su1po,sing:

lløt I( is

p-conr.ex, \\.e have

to

lrrorr.e_

K + K i-,K, lf

irr

aìld y ale in 7f,

thctn

¡r-il' and (I -

fr)-"1t

ale irr 1l too (rccall thLt 0 <? < 1)

a,nd, thcr,efor.e, ,r

J

U

:.p2)-i,.,; i- + (1 - ?)(I - p)'1y el(.s

C)oncerning

the

r1i¡tanco

fulrclion

tlr;(.r'jf), \\rc pl.tlvc

llrlolosrtton

3.2,

I'et,Y

bc ct t¡,ornteil spcrce.

If I{

ís &co,n,Dctu cr¡n,e i.n

X cnttl Y'is

cr' tt'on,ar¡icl'p-cotttert; su,bset o,f ,Y, ttietr tltc tlistant'e ftrtr.ctiott drr(.

, 'I) is

p-crn'ue,tt, i.e.,

{10)

rl¡;('1t,t +- (1

-

,¡t)

t:','J1)

<i ptt{¡¡(tt:,

T) l-

(1

--

¡t)

tl¡(et,'y)

.for ttl,l,

t:

ur¡cl

a' in,

'Y.

... Proo.'Í'.

It is

suffioionl,

to ¡tloyo (10)

rvher-L dr,(a:,

II) ilrtl

rlr,(a;,, T) alo

tinitc

nttmbtl's. Givc'n e

)_i),

thele cxist r7 tr,ntt ,u'it't

ll

such

that ,I

-

nl,

'.t1'

- r'9.{:ll,t:-!tll {

tl1¡(a;,

Y)f ranclll,r' - u'llttl¡¡(:u, Ii) i

u. Tho'l;-con-

voxit¡' of Y

arril

the

convexitv of

1i

irrrpl.v ,t)]J

+'(I - Ðlt,e Y anil I)y

1_

+ (1 - p)y' -

(p:t:

)- (1.-_/¡) ;'') -

pQl

- ¡,t

-F

1 - fù(!t' - r/)

e

I{"

s,o

bhat ( pllr,

dn(1t;t'

- llll -l

-l- (1

(1 - -- 'l)ll:t/ - p)

r'.,

Y) {

,!t'll llpr,

< { tt

Ttct¡¡(t:,I)

--

'p)

+(I - (n' -"Ø.ìì

1ì¡tJ,,1n',IZ)--¡'e.. As

-- Í -

p)

ú,)ll<

e

) 0 is at'bitlaly, incqualil,y (10) hoicls.

g

7

(5)

102 gT. COEZAS and I. MUNa!ÐAN

Doiìtt of

epi É1.

To this

encl,

b¡"

l,he

continuity

"ottttttton, therc

cxists a

5->o

sncÌì

that ilÌ(z) - II(zòl <1-1: for ail

ø

in Z u'ith

ll ã

-

Èoll

<

ò.

Rernarh

th¿r,t

the

neighbtrurhoocl

e7':llË -

zoll< S}

x)lù(z)t*'-t

2

of flre point

(ao, I4(zò

i 1) is included in

epi,l4,

so_that

(øo,I)(zn\

t.L) ivill

be

-in the iite.ìiör. of

cpi -l?. Inrleocl,

if (ø,

ø) e

Z x 1l is

such

that llz-zoll <ònnrtø )D(z) )-;-, tlrt'n

-11(z)

-0(;o) 41 irn'Iicstltab

a

)>

Itr(z) -F ! )

7)(øo)

I

IJ(z)

-

It)(øo)

:

It(z), z

ltcnccr

(ø,

o.) e cpi 14'

îlre point (r,

D(u))

is

a l¡ouncta,r¡'point

of cpi

D becausc

(a, E(r))

e

e opi -/1, a,nc1

if

V:{øeZ:lln-zll <rl x lE(r) - e, It(r) *'[' r ]0,

e

]0;

is

a rrcighbourìroorl

ol'

(ø,

ü(r'))in i4x Il,

t'lrr:n (

\ r,

I')(tt'\

- *)e 21 l/\.cpi

D'

Aulrlving

Thcolem 1.3,

thele

exists a closedhype'rplanc

in Z

X

1l

suppor-

iäiä Ëinh

at, the

point(ø, E(n)).This

means that thereis (a*, À) e Z*

x Il : :"Ø x n)*, (z*',

À)

I (0,0) such

that,

(18)

z*(n)

*'ì'' Il(n) 2

ø*(ø)

* À'"

fol all øeZ

attd. a,ll ø e

B rvilh

o-

)

1l(z).

I1

À

: 0, then

ø*(n) >- ø*(ø)

for all

z e

Z, irnplying^ that

e*

:

0,

rvhich

contrad.icl,s

the

hypothesis 1,ha1,

(z*,

À)

+ (0, 0). therofo.c, i. +

0

ancl

tahing ø: n in

(18), one obtains

À'-Þ(a')

2 ),'ø. e )'' [Ð(ø) -

æ)

) 0 for all o

>-

I](n),

rvhichimplies

),

(0.

Dir.icting ir-rccFrality (18)

by -).>>

0

andtlcrroting øf;:

: -)'.-1 'a*,

one

obtlins

(1e) zt@\ - It(*) >

z[(z)

-

u

for all zeZ andall

ø e

,ll ri'ith u à E(ø). When o:

It)(z),

inequality

(19) beoomes

(20)

øl(n)

- E(n) >

øt@)

-

-ÉJ(a)

for a[

z

eZ'

To conclude the proof of Theorern

3.3,

rre !eed. t]re follos'i¡rg lemma,

wnich

appears

in tf¡lì p.

38,

but our proof differs frorn

l,he one

git'e'

therein.

Lnivrryr¡. 3.4.

If

ø' e

Z'

søftis/ies

llla'lll 4 L,

tlt'en

,(21)

sup{a'(ø)

- E(ø): zeZ\ -

sup'rø'(y):

y eY}'

Il

lllø'

lll >r

(includ,in'g tlta aasø

lllz'lll : æ),

tlt'en

,122)

suP{ø'(a)

-Ð(z): zeZ}:oo'

P-CONVEX SETS 103

Proo.f

o.f'Lenima

3.4. Lei;

B'

eZ' :villt ill¿'lli < 1, atrtl let

Y

el'"

fi'rorn

0 e

Il antl

.r7

f 0 - ll e Y, it, follou's that

0 < Ð(y):inf{lly -Qt +h)il : l;eíi,

ry -tr

keY) < liy -7ll :0

rvhich yielt'ls lù(y)

-

0

fol

all

u eY.

flìhis trqualil;--v :rncl tht'ilrclusir'¡tt

ll c

Z plocluce

sup[ø'(ø)

- IX(z): øeZj )

suple'(u)

- I')(ti): y eY) -- :supiz'(y), ye1ll,.

¡61v, taliins into

accounl,

tlr:Îiltition

(1G)

of

^S'

alrtl inctlnalit¡r

(1?),

onc

obtains

ø'(ø)

-

sup{e'(ø)

: y eY) <

B(e)

ç //(a) lo'- all

z

eZ

giving tìre opposite ineclualit¡.

sup{a'(ø)

-

IX(ø)

:

z e Ø)'

<

srlpiz'(ll)

t ll e

Y';, needetl

for thc plcof of

eclualitl' (21).

If llia'lll >1,

i,henthele exists

n l;eZ n (-/í) l'itit ll/ill :1

*.',"it tJnaí

ø'(lt:):1 + ø,

where

ø )0.

Sincc Ä;

eZ,

iT'

follol's (by the

h.vpo-

theses

of 'lheolem iì.3) that, Il ¡

(fu

I + Ø,

-se l'11¿¡

lhclo

arc l¡' e

I{

andyne Ysuch that,r7o-l,:J_lil

ay

y,r-l¡:-l,feIí' [ìol' ttn¡' \>-7, the rclat,ion

-

1)

'(-lo)

e

f{

irnptrie's 1'ha1, J/o

* À(-/,') : ïo -

l,: -r

¡

- 1)(

lt,)

eI{

1-

I{

<-

lf

(see

the proof of

i?r'oliosition

3.J).

'llhcle"

foLe,

Z(Àtu)

:inf

illÀiu

- yll:

y

€Y, !/ -

À/¿e

/r] < llÀtu

t/oll <

<

Àll/r;ll

*

llyoll

:

^ * lly.ll for all t 2

f

.

Consequentl¡',

e'(f )'/') Ð()'tt:):

À(1 -l-

a) -

/l(),1;)

2 À(l -l-

o")

-

ill/oll

-

À --'

: À" -

llyoil.

Since v"

) 0,

À/c

e'/

a;:rtl -À/r; e

Z lor

t'.Il À

)

1,

it follot's

1,ha1,

sup[ø'(z-)

-]ì(z): øeØ) )sttpLø'(f],/i)

//(À/i;)

:

À

)1] :co.

Lernrna 3.+ is

plovecl

.

$

Norv,

let

us continuo

thc

proof oli il'heolent 3.3.

\\¡e intencl to shol' that

the furrctional

af

cotrstructed above

is in

/31.,

i.

e., l;lei"lll

< L

Supposing

the co trary,

ìll"å*lll

)J,

ancl

using Lemrna l].,tr

¿llrrl

inequality (20), ive

obtain

zt@)

-- n@) >

sup{air(ø)

- E(z): r e'i!'} =:

co.

On the otht'r'

hancl,

by

hypothesesl

of l'heoletn 3.3,

(o: -l- 7i) n

\: +

Ø,

so l,hnt

Il(ar)

is a finite number'.'Iht¡ obtained.conlratliction

shorvsthal u'e musl, ha"¡.e lllød'lll

< [,

therefore relal,ion (21) of

the

samc Lenììnà â]rd

Ínequality

(20) yielci :

øl@)

--D(u) >

sup[øf(ø)

-E(r): zeØ]: sutrizt(A)t y ev).

IJ

(6)

104 $'f, cctBzA$ al1d. l. MU,N1,.II:r.\N 10

Itronr this incqualit¡'

and inoqua,lity (17) onc tletivos

that

(23)

,Y(er)

2

cf

(r) -

sup {e$(v) :.r¡

e Y}

>

Il(t) ù 8(x),

hencc,

(24)

II(:u)

: ñ(c) -

ef (rr;)

-

sup {ef (g) : u

eY}.

llo

conclutle

the

1ttool', tvcr lt¿lt'e

to

shou'

that if

rr e

Z\Y,

then

llìeflll

-

1.

Iìy

(21), z{

t

0 be¡caustt

n( I

irnplies

that

/4(.r)

Þ

0.

\\¡o

hnow

itrat

¡11a¡111

< 1. If llleflll<r, then

lilÀeolll

:

1,

tthclo

¡.

: lll"Jll-')

1,, and

reasonirrg

lilic in

the final

palt

of

theproof

oÎ illheolern 2.4 tvo

got a

cotì-

tlaclicl,ion.

lhe prooli of

ilhcorcrrn

ll.il. is

ootnplct,e.

I

lìn¡r¡rln

3.5. Wlion

Z:I( :

-1, the d.istance

function cln(:,Y)

¿ìgÌeos

rvitlr the

usua,l clistanco

functiot

d,(n,

Y) :

inT

{ll, - llll: I

e

)i},

rr e

't,

ant1, as it, is rvell ltnorvn,

this function

is continuous (in

fact it

is ovcrL

lrip-

sclritz, i.e., ld(æ,

Y\ - tl(r', Y)l < llr -

ar'll

tot' an\. {t, ttì'itt -'li,

see

l20l'

p.391 ). thelef.ore, lllteolern 3.3

crtends

Theoretns 2.3 ancl 2.4. .l.he func-

l,ional tt¡r(.,Y\ is not

alu'a)-s

contimrous

as

is

shon-n b.\-

an

crxanrplcl

in

f131,

p.

10.

.l.he tollorvirrg erarnple

shot's that thclc exist

p-coLn

er

fulrctions ctefinecl orì p-co]t\¡ex scts

lvhich ale not

continuous on

the

$¡lìole domain

of

clefinition.

Iìx,trlr,n 3.6. Let X: llzecluippetl tvithtlte

Eucliclea,n

nornr

a,ncl

lc¡t

Y - I@,y) eIt2: løl -F lyl < 1ì u {(r,

u) e

Q":løl * lyl :11,

n'ìrere

Q

tlcnotcs

thc

sel; ofi r'aticltr¿r,l nrunbet's.

il'ho fulrcticln.f : Y

--+

ß,

definccl bJ'

./(r, !/) -

ltul

+ lyl fol

latl

* lyl < 1,

ancl

.f(n,y): 2 for

\n,

y) e Q2

\'ith irl *

I

lll: 7, tt *-con\¡ex l¡ut it is continuous

only

oninl, I',:

l( :t',!ù

e Il,!:t¡l:l t ly¡-<

f l.

lriho in thc

o¿rsc

of

best zr,pploxirnation

b¡'

clt¡lncnl,s

of a

7r-convcx

sct

(Corollar'¡. 2.5), 1'r'onl llhct¡r'crn

ll.ll

oììe

ciìn

delivc'

:lcharactclization

of

eleurc¡rrts

besl, apptoxitna,tiott

I'ith conical rcstlicliorts.

Conol,lÀn,l' i\.1

. I'et,Ybe

u'not"nt,eil spuce,

let I(

be

(t

corl,rcfi cotte

in X,letZbeusubsltuceo.f X,ne Z:..Y

tr,ite)'y

e I¡(,r lI{), ult,et'eÍ'ís a

subset o.f

Z

sucl¡

that

Y n (z -[-

I() + Ø for

a,Il

øeZ. In,

ortler tlt'øt

q

be

a

projection

o.f

æ

onto

y ¡(n + K),

i,t

is

suf.ficient a,ncl,

i,f Y is

p-conaeü, ,also ,necessary to e;nist

zi eZ'

wt'th, th,e proTterties :

a) lllz'' lll : I;

b) z; (.r

-

-

A)

:

lln

-'yll;

anc,l

c) zo'(U):

sup{z;

(U'): lt' eY). IJ Í is

p-conaer,

then, l,he Junctional zo ca,n be clt'osen tr¡ l¡e continu'o'u,s on 7'.

Proof. Ißl zs be a functional in Z'

sa'l,isfying

ø), b) antl c). l'or

,every

y' e Y rvith y'

e

n +

-K

the inequalit¡.

(1.2) implies

lln -ll

ll

:

zo

(r - u) : øi@ -

u')

+ zi@') --

ø'

(y)

<

(

zo

(ø - y') < ltlø'olll llr -

y' ll

:

llø

-

u'll,

-which shows Lh.at

y is

a projection

of

ø

onto T

n(æ 1-

I{),

Ciorryc¡sellr, suppose

tìrab l is

p-convtìx

antl let r/ lrc

¿l

plojection

of

ar

onto T

n"('æ

+k¡- B¡' lìheo.e;. ll'i,, l;ltore exisl's r{ eZ*,

tvil"h lllzü il I

: 1,

such l'hat

\25)

llr,

-

y ll

:

eJ(æ)

-

sup{ø,f (u')

;

Y' e

Í).

thc prooÏ rvill be

complcttr

it

rvo

shou' that

supføf (tl')

: !'€Yl:

: zi!).

^Othelrvise,

sup{4f;(17')

: y'e I-l >e;*(y) tr'r-rrl, since n -

Y e

e

(-/l) ¡ Z, inequalit¡' (12)

vicltls

llr -yll : lllr#lll llø - ttll >

zfء)

-zi?) >þð(ø) -

- sttl)',"t0') :

1¡' e

X), contlaclicting cqualit)'

(25).

¡

/l. Ilest upPrrlriluulion b¡' elt'nrt'lts

1¡[ s¡11r1'lts.

,\' subst:t ]i of

â,

norrngcl space

i'is

callorl 1,-cctie'rrt,

if its

coruplc'tnt¡nt -\:

'\

Y

is

a bouncletl p-sony6,x'set

s,ith

notrvoiil intt¡r'ior'. ilìhe

stutt¡'

o1' Lltrsl, allploxì.tlation_b-t'

älcmelts of

câvems (subsets

of

a

ltolrnctl

sp:rct' r,r'ith

_nonvoitl

llounclecl

.convex

anrl tlc¡tti

a,trtl I.Singcr

[61. The

pt'o

czÙI'erns was Posecl

tt¡''ft. ta,r" still

lursolvstl

plo-

biern

of con s'

lllltc'

terrn

ú(I{lce

'câvcrn"

\yâs plollosetl ll-v

tì'

Aspluncl [21.

Thc iiollowing tìreolorn cxtcntls

to

p-cÍr,r't'trts

the

rnait-L

tlualit¡'l'esult in [6], lhcoretn

2.1.

.llrrUOlnll [.L. Lat

,Y. be u, ttt¡t'ntatl SP6Icet

let Y

bt¿ tt p-cctttct'tt,

i'n X

cntil n

€f \Í.

Then,

(26) inl{ll,r -yll:Ye Y}: inf [sup{r*(.t'):r'e-\:\Tì - -

t,i (,Î)

:

¡r,"* e

^5"i I

uherc,St :

{ø{' e

-\l* :

ll ,r* ll

: )t¡

'is tlLe u't¿it s'¡tltet'e 'in llte

tlttal

sltttce 'Y*

oÍ x.

Proo.f.

Put t/ : inf{ll

1,

-'llli ' y. {l rx(r'.) i.

n'..e

e _'\,

\ yll -

r*(,r,)

:

¿*

. Sol.

i,q.¡ o''i' E

¡{', sn¡r[,r'r(;')

:

"' . .f \'Yi

(c

is'l'irilc

bccaust¡ -X

\

Y is

r

tlcrl)'

H : {n' e 'Y

r'F(n')

: !l

is-inclLrrlctl

in -Í.

Intleetl,

iÎ n' 'eint(I \ Y). Since.I \ Y '- lel'E {;1r*('r")

--(

< c) int(-Ií \ IJ-c int{ø"

e

'!

.:

YiV")

S

,}

=

{n'-'-e

X=-"

**(á **('n') ì c.

Therefole, n'

f

11 showing

that H cY '

B¡, Ascoli's formula

for the

distancc

from

a

point to

a hypelplane

in

:a normôd space (sec f201,

¡t'

24) rve have

¿:tl(n,'Y):¡t(t', y) :intLllr- yll:

y e

7l <irfl'll't --yii:'yeHj:

: lr*(ø) - cllllr*ll : sup{ø*(n'):n'

e

X\ yi - **(n).

'lherefore,

,(27)

cZ

<infisup[n*(ø') i n'eX\Yi -n*(n)i nooeB*]:/'

?-CONVE)( SETS 105

11

Referințe

DOCUMENTE SIMILARE

The aim of the present paper is to show that many Phelps type duality result, relating the extension properties of various classes of functions (continuous, linear continuous,

Il¿i,s bedeutet, clap es Boltzmann-Volterra Materialien gibt, clie in Spzi,nnung uncl Vtrl'zeLtu t kein konstitutir¡es Ínertialsvstenì bilderi Gemäp cles sollen

Example 1.1. Every open set Y in a topological vector space is weakly- convex.. Section 3 is devoted to the proof of an accessibility theorem for p-convex sets. In the last section

sorne inclusion relatious betlveen Hausclorff h-rneasures and clilferent kincls of 3essel capacities, gencralizing in this rvay the corresponcling theorems of

f1 dieser Arbeit wird eine allgemeine Dualitätstheorie für Optirrrie- nktion eine konvexe Abbildung

Résumé: Le sourire, comme le rire, tous deux des expressions humaines, non-animales, se détachent comme des paradigmes abstraits d’un sourire sans corps ou sans

Il affronte la réécriture des ballets de répertoire (Sacre de Printemps, Noces), chorégraphie des compositions musicales classiques ou contemporaines (Les quatre saisons de Vivaldi

In the present work, nano scaled zero valent irons (nZVI) were synthesized in ethanol medium by the method of ferric iron reduction using sodium borohydride as a reducing agent